随着纳米技术和微粉制备技术的发展,纳米与亚微米级金属粉末在金属粉末烧结板中的应用逐渐成为研究热点。这些超细粉末具有极大的比表面积和高表面能,能够改善烧结板的性能。在电子封装领域,采用纳米银粉制备的烧结板,由于纳米银颗粒间的烧结驱动力大,在较低温度下就能实现良好的烧结结合,形成高导电、高导热的连接层。与传统微米级银粉烧结板相比,纳米银粉烧结板的电导率可提高 10% - 20%,热导率提高 15% - 25%,有效解决了电子器件散热和信号传输中的关键问题,满足了电子设备小型化、高性能化对封装材料的要求。开发空心金属粉末,降低烧结板密度,实现轻量化的同时保持一定强度。宁德金属粉末烧结板

还原法:用氢气、一氧化碳等还原剂将金属氧化物还原成粉末,纯度高、活性大,烧结活性高,能低温致密化,但生产需高温和特定气氛,设备投资大、成本高。在制备一些对纯度要求极高的金属粉末,如用于电子材料的金属粉末时,还原法较为常用。电解法:电解金属盐溶液或熔融盐,使金属离子在阴极析出成粉末,纯度极高、粒度细且均匀,适用于对纯度和粒度要求高的领域,如电子材料,但生产效率低、能耗大、成本高。在半导体制造等对金属粉末纯度和粒度要求极为严格的领域,会采用电解法制备金属粉末。四川金属粉末烧结板创新采用可降解金属粉末,用于临时支撑结构的烧结板,完成使命后自然降解。

金属粉末烧结板作为一种重要的材料,在众多领域发挥着关键作用。其发展与粉末冶金技术的进步紧密相连,从早期简单的应用逐步发展成为现代工业中不可或缺的材料。了解金属粉末烧结板的发展历程、现状及未来趋势,对于推动其在更多领域的应用和技术创新具有重要意义。粉末冶金方法起源于公元000 年后,埃及人在一种风箱中用碳还原氧化铁得到海绵铁,经高温锻造制成致密块,再锤打成铁器件,这可以看作是粉末冶金技术的雏形。19 世纪初,俄、英等国将铂粉经冷压、烧结,再进行热锻得到致密铂,并加工成钱币和贵重器物,进一步展示了粉末冶金的可能性,但此时技术尚处于初级阶段,应用范围极为有限。
机械粉碎法:靠机械力将块状金属或合金碎成粉末,设备简单、成本低、产量大,但粉末形状不规则、粒度分布宽,易引入杂质。例如在一些对粉末纯度和粒度要求不高的场合,如普通建筑材料中使用的金属粉末,可能会采用机械粉碎法制备。雾化法:把熔融金属液用高压气体(氮气、氩气)或高速水流喷成小液滴,冷却凝固成粉末。气体雾化法粉末球形度高、流动性好,适合制造高性能零件;水雾化法成本低、效率高,粉末形状不规则,常用于普通钢铁粉末及性能要求不高的制品。在航空航天领域制造高性能金属粉末烧结板时,常采用气体雾化法制备高质量的金属粉末。设计含热致变色材料的金属粉末,让烧结板根据温度改变颜色,用于温度指示。

20世纪60年代末至70年代初,粉末高速钢、粉末高温合金相继出现,促进了粉末锻造及热等静压技术的发展及在度零件上的应用。这一时期,金属粉末烧结板的材料种类更加丰富,除了传统的钢铁材料,各种合金粉末被广泛应用于烧结板的制造。通过合理设计合金成分,能够使烧结板获得更优异的性能,如高温合金粉末烧结板在航空航天领域展现出巨大优势,可用于制造发动机部件等,满足了航空航天等领域对材料耐高温、度等性能的严苛要求。同时,在烧结工艺方面,热压烧结、放电等离子烧结(SPS)等新型烧结技术不断涌现。热压烧结在烧结时施压,能降低烧结温度、缩短时间,获得更高密度和性能的制品;放电等离子烧结通过脉冲电流产生放电等离子体和焦耳热快速加热烧结,可颗粒表面杂质,表面,升温快、时间短且能抑制晶粒长大,用于制备纳米材料等。这些新型烧结技术的应用,进一步提升了金属粉末烧结板的性能,使其在更多领域得到应用,如电子信息领域中,一些具有特殊性能要求的电子元件开始采用金属粉末烧结板制造。采用超声处理金属粉末,细化颗粒,改善烧结板的均匀性与性能稳定性。宁德金属粉末烧结板
研制含金属有机框架的粉末,赋予烧结板高比表面积与独特吸附性能。宁德金属粉末烧结板
在现代,各种先进制造技术在金属粉末烧结板领域得到广泛应用。除了前面提到的 3D 打印技术和纳米粉末冶金技术外,计算机模拟与仿真技术也发挥着重要作用。通过计算机模拟,可以在实际制造之前对粉末的流动、成型过程以及烧结过程中的温度场、应力场等进行模拟分析,预测产品性能,优化工艺参数,减少实验次数,降低研发成本和周期。例如,在设计新型航空发动机用金属粉末烧结板时,利用计算机模拟技术可以提前评估不同工艺参数下烧结板的性能,从而确定比较好的制造工艺。宁德金属粉末烧结板