医药生产对传递窗的要求严格遵循GMP(药品生产质量管理规范)及EU GMP Annex 1等标准,关键在于控制微生物污染与交叉污染风险。用于原辅料传递的传递窗需配备双扉互锁系统,外侧门连接一般生产区,内侧门通向洁净生产区,中间区域设置专门的自净与灭菌模块。例如在无菌制剂车间,传递窗需集成过氧化氢(H2O2)干雾消毒系统,消毒程序包括预除湿(湿度降至30%以下)、干雾扩散(浓度100-200ppm)、灭菌保持(30分钟)、通风解析(至浓度≤1ppm),确保嗜热脂肪芽孢杆菌的杀灭对数值≥6。箱体内部采用316L不锈钢电解抛光处理,表面粗糙度Ra≤0.8μm,避免药液残留滋生细菌,排水口设计成防虹吸式U型弯,防止洁净区与非洁净区通过排水管串流。传递窗的互锁时间可根据实际需求进行程序设定和调整。广东洁净不锈钢传递窗

科学的维护保养是确保传递窗长期稳定运行的关键,需建立包含日常检查、定期维护、部件更换的三级保养体系。日常使用中,操作人员需每日清洁箱体表面(使用无纤维脱落的洁净抹布配合75%酒精),检查门体密封胶条是否破损、压差表指针是否在正常范围(初始阻力±10%以内),并记录设备运行时间与异常情况。每周需进行功能测试,包括互锁系统灵敏度(开关门3次测试互锁响应时间)、杀菌灯启动状态(紫外线灯亮灯后30秒内达到标准辐照强度)、风机运行噪声(距设备1米处≤65dB(A)),发现异常及时停机报修。广东洁净不锈钢传递窗传递窗的内部照明设计,便于操作人员清晰观察和取放物品。

压差控制与气流组织密切相关,传递窗的进排风位置需遵循 “上送下回” 或 “侧送侧回” 原则,避免形成气流死角。对于自净型传递窗,内部循环风机的风量需与压差控制需求匹配,例如在 ISO 5 级洁净室中,循环风量需达到箱体容积的 500 倍 / 小时以上,确保在门关闭时快速建立稳定压差。实际应用中,压差调试需结合洁净室整体风量测试进行,使用热球风速仪检测传递窗门缝的气流方向(应始终向洁净室外侧),风速≥0.25m/s 以形成有效气幕。定期(每季度)校准压差传感器的零点与量程,防止因传感器漂移导致压差失控,是压差控制系统维护的关键步骤。在医药洁净厂房的验证过程中,需通过烟雾模拟测试传递窗开启时的气流走向,确认污染空气不会逆向流入洁净区,确保压差控制方案的有效性。
性能验证还包括自净时间测试,即从开启外侧门放入污染模拟物(如携带尘埃粒子的标准试片)到箱体内洁净度达标所需的时间。测试方法为:在箱体内部初始洁净度达到目标等级后,人为引入一定浓度的尘埃粒子(≥0.5μm 粒子数≥10^5 个 /m³),关闭外侧门并启动自净程序,使用激光尘埃粒子计数器实时监测粒子浓度变化,记录粒子数下降至目标等级(如 ISO 5 级:≤3520 个 /m³)的时间,该时间应≤设计值(通常 10-15 分钟)。测试过程中需确保风机运行参数稳定,过滤器无泄漏,门密封良好。气流流型与自净时间测试是传递窗认证的必要环节,数据需作为设备性能报告的关键内容,为用户提供洁净度保障的量化依据。日常运行中,可通过定期(每年一次)的气流可视化检测,及时发现因过滤器堵塞、导流板移位等导致的气流异常,确保设备始终处于优良工作状态。传递窗的风速设计需符合标准,确保有效吹扫物品表面污染物。

在特殊行业标准中,电子行业的 SJ/T 10694《电子工业洁净厂房设计规范》强调传递窗的防静电设计,如表面电阻、接地电阻等参数要求;生物安全实验室执行 GB 50346《生物安全实验室建筑技术规范》,传递窗需具备负压控制与灭菌功能,防止有害生物因子泄漏。标准符合性验证是传递窗出厂与验收的必要环节,包括洁净度测试、压差测试、灭菌效率测试等,第三方检测报告需注明所依据的标准条款,确保设备在不同应用场景下的合规性。随着行业标准的不断更新(如 ISO 14644-12:2021 新增纳米颗粒控制要求),传递窗的设计也需持续迭代,以满足更高精度的洁净控制需求。传递窗的紫外杀菌时间需根据物品类型和污染程度合理设置。广东洁净不锈钢传递窗
光伏电池生产车间通过传递窗转运硅片,避免颗粒污染影响良品率。广东洁净不锈钢传递窗
与洁净室压差系统的配合是安装的关键要点。传递窗两侧需分别连接洁净区与非洁净区,安装时需确保箱体与墙面的密封等级达到洁净室同级别气密性要求,常用 “三明治” 式密封结构:内侧为不锈钢板与墙体贴合,中间层为弹性密封垫,外侧用铝合金压条固定,经气密性测试后泄漏率≤0.5%。压差传感器的安装位置需靠近传递窗内侧,实时监测两侧压力差(通常洁净区比非洁净区高 10-15Pa),当压差低于设定值时互锁系统自动锁定,防止未经过滤的空气倒灌。在生物安全实验室等负压环境中,传递窗需额外配置压力平衡阀,确保箱体压力始终低于相邻区域 5Pa 以上,避免污染空气外溢。广东洁净不锈钢传递窗