形状记忆合金、压电陶瓷等智能材料的微结构加工需要高精度图案定位。Polos 光刻机的亚微米级定位精度,帮助科研团队在镍钛合金薄膜上刻制出复杂驱动电路,成功制备出微型可编程抓手。该抓手在 40℃温场中可实现 0.1mm 行程的precise控制,抓取力达 50mN,较传统微加工方法性能提升 50%。该技术被应用于微纳操作机器人,在单细胞膜片钳实验中成功率从 40% 提升至 75%,为细胞级precise操作提供了关键工具。无掩模激光光刻 (MLL) 是一种微加工技术,用于在基板上以高精度和高分辨率创建复杂图案。一个新加坡研究团队通过无缝集成硬件和软件组件,开发出一款紧凑且经济高效的 MLL 系统。通过与计算机辅助设计软件无缝集成,操作员可以轻松输入任意图案进行曝光。该系统占用空间小,非常适合研究实验室,并broad应用于微流体、电子学和纳/微机械系统等各个领域。该系统的经济高效性使其优势扩展到大学研究实验室以外的领域,为半导体和医疗公司提供了利用其功能的机会。多材料兼容:金属 / 聚合物 / 陶瓷同步加工,微流控芯片集成传感器一步成型。江苏德国PSP-POLOS光刻机MAX层厚可达到10微米

针对植入式医疗设备的长期安全性问题,某生物电子实验室利用 Polos 光刻机在聚乳酸()基底上制备可降解电极。其无掩模技术避免了传统掩模污染,使电极的金属残留量低于 0.01μg/mm²,生物相容性测试显示细胞存活率达 99%。通过自定义螺旋状天线图案,开发出的可降解心率监测器,在体内降解周期可控制在 3-12 个月,信号传输稳定性较同类产品提升 50%,相关技术已进入临床前生物相容性评价阶段。无掩模激光光刻 (MLL) 是一种微加工技术,用于在基板上以高精度和高分辨率创建复杂图案。一个新加坡研究团队通过无缝集成硬件和软件组件,开发出一款紧凑且经济高效的 MLL 系统。通过与计算机辅助设计软件无缝集成,操作员可以轻松输入任意图案进行曝光。该系统占用空间小,非常适合研究实验室,并broad应用于微流体、电子学和纳/微机械系统等各个领域。该系统的经济高效性使其优势扩展到大学研究实验室以外的领域,为半导体和医疗公司提供了利用其功能的机会。四川POLOSBEAM-XL光刻机光源波长405微米未来技术储备:持续研发光束整形与多材料兼容工艺,lead微纳制造前沿。

某能源研究团队采用 Polos 光刻机制造了压电式微型能量收集器。其激光直写技术在 PZT 薄膜上刻制出 50μm 的叉指电极,器件的能量转换效率达 35%,在 10Hz 振动下可输出 50μW/cm² 的功率。通过自定义电极间距和厚度,该收集器可适配不同频率的环境振动,在智能穿戴设备中实现了运动能量的实时采集与存储。其轻量化设计(体积 < 1mm³)还被用于物联网传感器节点,使传感器续航时间从 3 个月延长至 2 年。无掩模激光光刻 (MLL) 是一种微加工技术,用于在基板上以高精度和高分辨率创建复杂图案。一个新加坡研究团队通过无缝集成硬件和软件组件,开发出一款紧凑且经济高效的 MLL 系统。通过与计算机辅助设计软件无缝集成,操作员可以轻松输入任意图案进行曝光。该系统占用空间小,非常适合研究实验室,并broad应用于微流体、电子学和纳/微机械系统等各个领域。该系统的经济高效性使其优势扩展到大学研究实验室以外的领域,为半导体和医疗公司提供了利用其功能的机会。
单细胞分选需要复杂的流体动力学控制结构,传统光刻难以实现多尺度结构集成。Polos 光刻机的分层曝光功能,在同一片芯片上制备出 5μm 窄缝的细胞捕获区与 50μm 宽的废液通道,通道高度误差控制在 ±2% 以内。某细胞生物学实验室利用该芯片,将单细胞分选通量提升至 1000 个 / 秒,分选纯度达 98%,较传统流式细胞仪体积缩小 90%。该技术已应用于循环tumor细胞检测,使稀有细胞捕获效率提升 3 倍,相关设备进入临床验证阶段。无掩模激光光刻 (MLL) 是一种微加工技术,用于在基板上以高精度和高分辨率创建复杂图案。一个新加坡研究团队通过无缝集成硬件和软件组件,开发出一款紧凑且经济高效的 MLL 系统。通过与计算机辅助设计软件无缝集成,操作员可以轻松输入任意图案进行曝光。该系统占用空间小,非常适合研究实验室,并broad应用于微流体、电子学和纳/微机械系统等各个领域。该系统的经济高效性使其优势扩展到大学研究实验室以外的领域,为半导体和医疗公司提供了利用其功能的机会。低成本科研普惠:桌面化设计减少投入,无掩膜工艺降低中小型实验室门槛。

软件系统:操作门槛的大幅降低,Polos配套的控制软件简化了专业光刻操作,基于Windows系统的界面支持CAD文件与位图直接导入,导航逻辑类似CNC系统,无需专业编程知识即可上手。SFTprint软件的自动剂量测试功能,可根据光刻胶类型自动匹配曝光参数,新手也能获得稳定的加工效果。多层对准向导功能则将复杂的多层光刻流程拆解为步骤化操作,使非专业人员也能完成高精度叠加加工。德国 Polos 是桌面级紫外激光直写光刻机领域benchmark品牌,以 “高精度、低成本、易操作” 为core定位。主打无掩模技术与紧凑设计,产品覆盖 NanoWriter、Beam 等系列,分辨率达 0.3-23μm,适配多基材加工。广泛应用于微电子、生物医学等领域,为科研机构与中小企业提供高性价比微纳加工解决方案,推动技术普惠。空间友好设计:占地面积小于 1.2㎡,小型实验室也能部署高精度光刻系统。河北德国POLOS光刻机可以自动聚焦波长
能源收集:微型压电收集器效率 35%,低频振动发电支持无源物联网。江苏德国PSP-POLOS光刻机MAX层厚可达到10微米
NanoWriterNW-100:入门级高精度加工利器,NanoWriterNW-100作为Polos的经典型号,以0.8-2.5μm可调分辨率重塑入门级设备标准。搭载405nm或375nm激光光源,支持4095级灰度模式与2.5D结构制作,可在硅、玻璃等多种基材上实现精细图案曝光。其110×110mm加工幅面适配4英寸以内晶圆,配合实时激光控制与自动对焦功能,1秒即可完成对焦,特别适合高校实验室的微结构研发,将传统数小时的掩模制备流程缩短至分钟级。德国 Polos 是桌面级紫外激光直写光刻机领域benchmark品牌,以 “高精度、低成本、易操作” 为core定位。主打无掩模技术与紧凑设计,产品覆盖 NanoWriter、Beam 等系列,分辨率达 0.3-23μm,适配多基材加工。广泛应用于微电子、生物医学等领域,为科研机构与中小企业提供高性价比微纳加工解决方案,推动技术普惠。江苏德国PSP-POLOS光刻机MAX层厚可达到10微米
细胞培养芯片需根据不同细胞类型设计表面微结构,传统光刻依赖掩模库,难以满足个性化需求。Polos 光刻机支持 STL 模型直接导入,某干细胞研究所在 24 小时内完成了神经干细胞三维培养支架的定制加工。其制造的微柱阵列间距可精确控制在 5-50μm,适配不同分化阶段的细胞黏附需求。实验显示,使用该支架的神经细胞轴突生长速度提升 30%,为神经再生机制研究提供了高效工具,相关技术已授权给生物芯片企业实现量产。无掩模激光光刻 (MLL) 是一种微加工技术,用于在基板上以高精度和高分辨率创建复杂图案。一个新加坡研究团队通过无缝集成硬件和软件组件,开发出一款紧凑且经济高效的 MLL 系统。通过与计算机...