在医药生产与生物实验室中,传递窗需集成高效灭菌功能,确保传递的物料、器具无微生物残留,符合欧盟GMP Annex 1与中国药典无菌检查法要求。灭菌型传递窗常用技术包括紫外线(UV-C)照射、臭氧(O3)消毒与过氧化氢(H2O2)干雾灭菌,不同技术适用于不同场景:紫外线消毒适用于表面灭菌,灯管功率密度≥15W/m³,照射时间≥30分钟,可杀灭90%以上的细菌繁殖体,但对芽孢效果有限;臭氧消毒通过内置臭氧发生器(浓度≥0.3mg/L),作用60-90分钟,能有效杀灭菌群与病毒,需注意消毒后通风至安全浓度(≤0.16mg/m³);过氧化氢干雾灭菌则适用于高风险场景(如无菌制剂传递),通过气溶胶发生器将30-50%浓度的H2O2雾化,在箱体内形成均匀分布的干雾(粒径≤5μm),接触时间≥45分钟,可达到6-log的芽孢杀灭效率(如嗜热脂肪芽孢杆菌)。医院手术室使用传递窗传递器械,减少人员进出对洁净环境的干扰。黑龙江什么是传递窗

在食品加工行业,传递窗的设计与使用需严格遵循GMP(药品生产质量管理规范)附录《食品生产通用卫生规范》及相关标准,确保物料传递过程中的微生物控制与异物污染防范。箱体材质一次选用316L不锈钢(接触潮湿或腐蚀性介质时),表面电解抛光处理(Ra≤0.8μm),避免粗糙表面滋生细菌;圆角设计(R≥5mm)消除卫生死角,便于CIP(原位清洗)时的高压水冲洗。门体需配备透明视窗与防雾功能(如电加热膜),方便操作人员确认内部清洁状态,密封条采用食品级硅橡胶(符合FDA 21 CFR 177.2600),耐受清洁剂与高温消毒(如121℃蒸汽灭菌)。黑龙江什么是传递窗自净式传递窗在物品传递前后自动净化内部空气,提升洁净效果。

气流流型测试是验证传递窗净化效能的重要手段,通过可视化方法评估箱体内气流是否均匀、有无涡流或死角,确保污染物能被有效带走。常用测试方法包括烟雾法、丝线法与粒子图像 velocimetry(PIV)技术,其中烟雾法操作简便,使用烟雾发生器(如癸二酸二异辛酯烟雾)在传递窗进风口释放烟雾,通过高速摄像机记录气流轨迹,观察烟雾是否以单向流形式通过箱体并经回风口排出,无明显滞留或回流现象。丝线法适用于初步检测,在箱体内部不同位置粘贴短丝线,开启风机后观察丝线飘动方向是否一致,判断气流是否均匀。
压差控制与气流组织密切相关,传递窗的进排风位置需遵循 “上送下回” 或 “侧送侧回” 原则,避免形成气流死角。对于自净型传递窗,内部循环风机的风量需与压差控制需求匹配,例如在 ISO 5 级洁净室中,循环风量需达到箱体容积的 500 倍 / 小时以上,确保在门关闭时快速建立稳定压差。实际应用中,压差调试需结合洁净室整体风量测试进行,使用热球风速仪检测传递窗门缝的气流方向(应始终向洁净室外侧),风速≥0.25m/s 以形成有效气幕。定期(每季度)校准压差传感器的零点与量程,防止因传感器漂移导致压差失控,是压差控制系统维护的关键步骤。在医药洁净厂房的验证过程中,需通过烟雾模拟测试传递窗开启时的气流走向,确认污染空气不会逆向流入洁净区,确保压差控制方案的有效性。风淋传递窗结合风淋功能,强力吹扫物品表面附着的尘埃颗粒。

在双碳目标与绿色制造背景下,传递窗的节能设计成为技术创新的重要方向,通过优化气流组织、提升能源效率与集成智能控制,降低洁净室的整体能耗。首先是风机系统的节能升级,采用EC(电子换向)变频风机替代传统AC风机,效率提升30%以上,可根据实际需求动态调节风量(如在非生产时段降至50%风量运行),配合压力传感器反馈的闭环控制,避免“大马拉小车”的能源浪费。热回收技术的应用在寒冷地区尤为重要,通过板式热交换器将排出的洁净空气与引入的新风进行热量交换,回收效率可达60%以上,减少空调系统的加热/冷却负荷。传递窗的内壁设计成圆弧角,避免积尘,符合 GMP 洁净室设计规范。黑龙江什么是传递窗
传递窗的内部照明设计,便于操作人员清晰观察和取放物品。黑龙江什么是传递窗
定期保养周期通常分为月度、季度与年度三级。月度保养包括:测试门互锁系统的灵敏度,通过手动开关门 5 次验证电磁锁响应是否及时,去除门轨道内的积尘确保滑动顺畅;检查风机皮带张紧度,用手指按压皮带中部,下垂量应≤10mm,过松需调整电机位置或更换皮带;对于灭菌型传递窗,需清洁紫外线灯表面的灰尘,确保辐照强度不受影响。季度保养内容涉及:拆卸初效过滤器(可清洗型)用中性洗涤剂浸泡清洗,晾干后安装前检查滤材是否破损,累计清洗次数超过 5 次或阻力增加 30% 时建议更换;测试紫外线灯的辐照强度,使用专门使用辐照计在距离灯管 1m 处检测,当强度低于额定值 70%(如 30μW/cm² 以下)时必须更换;对控制系统进行功能校验,模拟停电恢复后的自动启动逻辑与故障报警功能是否正常。黑龙江什么是传递窗