EndoS糖苷内切酶S在抗体药物偶联物(ADCs)研究中的应用主要体现在糖链定点偶联技术上。通过上海药物所的研究,开发了一种新颖的糖链定点ADC制备策略,利用EndoS2这种糖苷内切酶,可以将小分子细胞毒药物“一步”定点连接到抗体的糖基化位点,实现了糖链定点ADC化合物的制备。定点偶联技术相比传统的随机偶联具有更好的方法指数,能够提高ADC的均一性和稳定性,是当前ADC领域的研究热点之一。在抗体的Fc结构域N297位,这是一个保守的糖基化位点,通过在该位点引入细胞物质,可以形成具有优势的糖链定点ADC化合物(glycosite-specificADCs,gsADCs)。此外,EndoS2对多样化的LacNAc修饰显示出良好的兼容性,能够高效获得功能修饰的糖工程抗体,并且可以用于抗体的内吞成像研究及糖链延伸等功能化研究。研究人员通过这种“一步”制备策略得到的糖链定点ADC化合物,在结构均一性、亲水性、体外稳定性以及体外活性方面表现良好,并且在体内瘤抑制活性方面,相比阳性对照ADC化合物,在低载药量的情况下具有更强的抑制效果。EndoS酶的这些应用,不仅展示了其在简化ADC制备流程中的潜力,还有助于推动定点ADC药物的深入发展,为未来的生物药物开发提供了新的思路和方法。在CRISPR-Cas9等基因编辑技术中,使用Pfu DNA Polymerase进行修复模板的合成。Recombinant Human HPX Protein,His Tag

5'DNA腺苷酰化试剂盒是一种用于将单链DNA(ssDNA)5'端腺苷酰化修饰的实验工具,其主要应用于miRNA等3'端为羟基的RNA或单链DNA在克隆、高通量测序建库或PCR检测等时,在3'端添加的接头的制备。以下是5'DNA腺苷酰化试剂盒的一些关键特点和使用方法:1.**高效转化**:该试剂盒能将95%以上的5'端磷酸化的DNA(pDNA)转化成腺苷酰化DNA(AppDNA),从而提高产量并避免胶回收提纯步骤。2.**操作简便**:单步反应即可完成腺苷酰化,无需复杂的操作或额外的纯化步骤。3.**高温反应**:在65℃的高温下进行反应,这有助于避免DNA或RNA的二级结构对腺苷酰化反应的干扰。4.**适用性广**:适用于pmol级别至µmol级别的底物量,可以方便地根据实验需要放大反应体系。5.**组成成分**:试剂盒通常包含腺苷酰化酶(Adenylase)、ATP和所需的缓冲液,以及用于启动反应的5'-磷酸化的单链DNA。6.**保存条件**:一般建议在-20℃保存,有效期至少一年,长期储存建议在-70℃。7.**注意事项**:底物单链DNA或RNA的5'端磷酸化是必须的,而3'端可以进行氨基化等封闭,也可以不封闭。反应完成后推荐在85℃孵育5分钟以失活Adenylase,防止去腺苷酰化现象。Recombinant Cynomolgus ADAM9 Protein,His Tag牛痘DNA拓扑异构酶I具有特异性识别能力,能够识别双链DNA中的5'-(C/T)CCTT-3'序列。

5'DNA腺苷酰化试剂盒通过特定的酶催化反应,将5'-磷酸化的单链DNA(pDNA)转化为5'-腺苷酰化DNA(AppDNA)。以下是启用5'-磷酸化的单链DNA的一般步骤:1.**准备反应体系**:-根据试剂盒说明书,准备所需的反应组分,包括5'-磷酸化的单链DNA、腺苷酰化酶(如Adenylase或MthRNA连接酶)、ATP和相应的缓冲液。2.**混合组分**:-将5'-磷酸化的单链DNA与腺苷酰化酶、ATP和缓冲液混合在适当的反应容器中。3.**孵育反应**:-将混合好的反应体系在指定的温度(通常是65℃)下孵育一定的时间,以允许酶将ATP中的AMP部分转移到DNA的5'端。4.**酶失活**:-反应完成后,在85℃孵育5分钟以失活腺苷酰化酶,这一步是为了防止后续的去腺苷酰化现象,确保腺苷酰化比率不下降。5.**产物收集**:-由于转化效率高,通常不需要进行凝胶纯化步骤。可以通过乙醇沉淀等方法收集腺苷酰化后的DNA产物。6.**产物应用**:-收集的腺苷酰化DNA可以直接用于后续的克隆、测序、连接或其他分子生物学实验。7.**注意事项**:-确保所有操作在无RNA酶和无DNA酶的环境中进行,以避免污染。-使用时需注意反应体系的准确性,确保底物、酶和ATP的比例适当。
PreScissionProtease(PSP)在去除融合蛋白标签时,对目的蛋白的纯度和活性的影响通常是积极的,具体表现在以下几个方面:1.**小化污染**:由于PSP具有高度的特异性,它在特定的肽键处切割,从而减少了非特异性切割可能导致的蛋白质片段,这有助于保持目的蛋白的纯度。2.**减少蛋白质修饰**:PSP的特异性切割有助于避免在切割过程中对目的蛋白引入额外的修饰,如磷酸化或糖基化,这些修饰可能会影响蛋白质的活性和稳定性。3.**保持活性**:如果融合蛋白标签的设计和切割位点选择得当,PSP切割后的目的蛋白通常能够保持其原有的生物活性。切割位点通常位于标签和目的蛋白之间,这样切割后不会在目的蛋白上留下额外的氨基酸,从而减少了对蛋白质结构和功能的影响。4.**提高纯度**:PSP切割后,可以通过亲和层析等方法将标签、PSP以及未切割的融合蛋白分离,从而获得高纯度的目的蛋白。5.**便于后续分析**:去除标签后的目的蛋白更易于进行后续的质谱分析、晶体学研究或其他生物化学分析,因为去除了可能干扰分析的标签部分。6.**稳定性**:在某些情况下,融合蛋白的标签可能有助于稳定目的蛋白的构象,因此在去除标签后,需要适当处理以维持目的蛋白的稳定性。利用牛痘DNA拓扑异构酶I的连接原理,可以在无需DNA连接酶的情况下,快速高效地连接DNA片段,实现克隆。

pA-Tn5转座酶是一种经过改造的高活性Tn5转座酶,与ProteinA融合,形成一种新型融合酶,应用于CUT&Tag技术中,用于研究蛋白质与基因组DNA的相互作用。这种融合酶具备以下特点:1.**高活性**:pA-Tn5转座酶是超高活性的突变形式,体外转座效率比野生型高1000倍。2.**ProteinA融合**:pA-Tn5转座酶的N端结构域为ProteinA的一部分,可以与免疫球蛋白的Fc区相互作用,特别是与大多数哺乳动物的IgG结合。3.**Tn5转座酶活性**:C端结构域为Tn5转座酶,能够特异性识别转座子两端反向重复的ME序列(MosaicEnd),并在形成转座复合体后随机插入靶DNA中。4.**应用广**:适用于CUT&Tag技术、高通量测序建库、ATAC-seq等,特别适用于早期胚胎发育、干细胞、以及表观遗传学等研究领域。5.**操作简便**:pA-Tn5转座酶的使用简化了实验步骤,可以在一步反应中实现DNA片段化和接头连接,从细胞到二代测序文库的转化过程需9小时。6.**低细胞投入量**:CUT&Tag技术允许从低至60个细胞的样本中获得结果,甚至可以应用于单细胞水平的研究。7.**高质量结果**:pA-Tn5转座酶的使用可以保证DNA片段化,同时获得的蛋白纯度高、核酸残留低。GPRC5D蛋白在宿主细胞内通过自组装形成VLP。这一步骤通常在细胞内发生,以提高VLP的产量和质量。Recombinant Human FLRT1 Protein,His Tag
在gRNA的引导下,Cas9 NLS可以对特定DNA序列进行剪切,适用于研究基因功能或进行基因编辑 。Recombinant Human HPX Protein,His Tag
PNGaseF(肽-N-糖苷酶F,Peptide-N-glycosidaseF),也称为N-糖酰胺酶F,是一种用于糖蛋白研究的酶,它可以从糖蛋白的N-连接糖链上去除糖基。以下是PNGaseF的一些关键特性和应用:1.**作用机制**:PNGaseF能够特异性地切割位于天冬酰胺残基上的N-连接糖链,释放出未被糖基化的多肽部分和糖链。2.**应用领域**:PNGaseF在糖生物学和蛋白质组学研究中非常重要,用于分析糖蛋白的糖基化模式和结构。3.**酶的来源**:PNGaseF开始是从大肠杆菌(Escherichiacoli)中分离出来的,现在也可以通过重组DNA技术在其他宿主细胞中表达。4.**酶的纯度和活性**:商业化的PNGaseF通常具有高纯度和高比活性,确保了在实验中的高效性和可重复性。5.**使用条件**:PNGaseF在温和的条件下工作,通常在pH7.5至9.0之间,温度在37°C左右。6.**稳定性**:PNGaseF在储存时通常需要冷冻保存,以保持其活性。在适当的条件下,该酶可以保持稳定和活跃。7.**样品准备**:在使用PNGaseF之前,糖蛋白样品需要适当准备,可能包括纯化和缓冲液交换,以确保反应条件的一致性。Recombinant Human HPX Protein,His Tag
重组人整合素αXβ2(ITGAX&ITGB2)异源二聚体蛋白(His标签)是一种重要的细胞表面粘附分子,主要表达于髓系细胞(如树突状细胞、巨噬细胞和单核细胞)表面,参与细胞迁移、免疫识别和炎症反应等多种生理和病理过程。整合素αXβ2,又称补体受体4(CR4),由αX链(ITGAX,又称CD11c)和β2链(ITGB2,又称CD18)组成,是β2整合素家族的重要成员之一。该重组蛋白采用哺乳动物细胞表达系统生产,确保了其天然构象和生物活性。其N端带有His标签,便于通过Ni-NTA亲和层析进行高效纯化,获得高纯度的蛋白产物。这种设计不仅提高了蛋白的稳定性,也方便了后续的实验操作,如ELISA、We...