电机是把电能转换为机械能的机器,存在于生活中的方方面面,可以为生产设备运转时为其提供拖动动力。机械在经过长时间使用后,都会出现一些意外情况,在电机出现振动异常时,不仅能耗会增加,甚至会引起人员伤亡。下面了解一下电机出现剧烈振动的原因,以及如何才能及时发现。①在工作机振动的时候,往往通过连轴器及技术影响到电机,从而产生振动。②电机轴承间隙过大时,电机的回转中心会随着负载的变化而变化,因此电机就会产生振动。③转子不平衡或者是轴刚度不足:在轴的刚度不足时,在运行过程中因为离心力、磁场力的作用,轴就会产生弯曲,从而产生振动,这种振动主要体现在水平方向。电机振动监测方案:温度振动传感器可以同时检测电机X/Y/Z轴三轴振动信号,并将数据实时上传至数据监控平台,防护等级高,IP67的防护等级,不仅可以用在多尘、干燥的环境,也可以用于水下潜水泵等地。它拥有多种数据传输方式,根据不同的使用场景,有多种监测方案可选。电机监测系统的目标是实现预测性维护,准确地预测电机何时会出现是一个复杂问题,需要综合考虑多个因素。南通状态监测台

电流和电压监测:通过电流和电压传感器监测电机的电流和电压变化。电流和电压的异常波动可能意味着电机存在负载过重、短路或开路等问题。这些数据的监测有助于及时发现电机的电气故障。绝缘电阻监测:对于大型电机,绝缘电阻的监测尤为重要。通过定期测量电机的绝缘电阻,可以判断电机的绝缘性能是否良好,预防因绝缘损坏导致的故障。润滑油监测:对于需要润滑的大型电机,润滑油的监测也是关键。通过监测润滑油的质量和油位,可以及时发现润滑油污染、变质或不足等问题,防止因润滑不良导致的故障。此外,大型电机的监测还需要结合先进的监测系统和数据分析技术。通过集成各种传感器和监测设备,构建一个完整的电机健康监测系统,实现对电机状态的实时监控和数据分析。同时,利用人工智能和机器学习技术,可以对监测数据进行深度挖掘和分析,发现潜在故障并提前预警。除了技术层面的监测外,人员培训和管理也是大型电机监测的重要环节。监测人员需要具备丰富的专业知识和实践经验,能够准确判断电机的运行状态和潜在故障。同时,还需要制定完善的监测流程和管理制度,确保监测工作的规范化和有效性。南通状态监测台使用绝缘监测设备来检测电机绕组和绝缘系统健康状况。绝缘降低可能导致绕组短路或绝缘击穿。

电机监测技术是指通过使用各种监测设备和技术手段,对电机运行状态进行实时或定期的监测和诊断。其主要目的是提前发现和预防电机故障,避免因电机故障而导致的生产中断和不必要的维修成本。电机监测技术可以帮助企业进行计划维护,提高设备的可靠性和运行效率,同时延长电机的使用寿命。电机监测技术包含多种原理和方法。例如,通过振动分析,可以检测电机在运行过程中产生的振动信号,从而判断电机是否存在不正常的振动模式;温度监测可以判断电机是否超过了额定温度范围,从而预防过载、绝缘损坏或冷却系统故障等问题;电流分析能够反映电机的负载和运行状态,通过监测电机的电流波形、频谱和功率因数等参数,可以检测到诸如相间短路、转子故障、不平衡负载等问题;绝缘电阻测试则可以评估电机的绝缘状态,检测绝缘是否存在破损、潮湿或老化等问题。
电机监测的难点主要体现在以下几个方面:传感器安装难:电机状态监测需要依赖振动、噪声、温度传感器等多种传感器设备。然而,由于设备类型多样,运行工况复杂,各种传感器的通讯协议并不统一,这导致传感器的安装、使用和维护成本高昂。技术成本高:预测性维护算法涉及数据预处理、工业机理、机器学习等多个领域,技术要求高,对技术人员的专业素养有较高要求。时间成本高:预测性维护的实现需要依赖大量的历史数据支持,而数据的采集、归纳、分析是一个漫长且繁琐的过程,需要投入大量的时间和人力资源。内部状态监测难:电机的内部状态,如温度大小、振动频率、噪音等,无法通过肉眼直接观察,需要依赖专业的监测设备和技术手段。而这些内部状态往往**能体现电机的实际运行状况,因此对其进行准确监测是电机监测的重要难点。点检内容繁杂:电机点检涉及视觉、听觉、嗅觉、触觉等多个方面,需要对电机的电流、电压、温度、振动、噪音、气味等进行***检查。这要求点检人员具备丰富的经验和技能,能够准确判断电机的运行状态和潜在故障。监测系统对这些数据进行分析,以检测刀具是否出现异常磨损、断刀等情况。

电机监测在故障预测方面扮演着至关重要的角色。通过实时监测电机的运行状态和参数,可以及时发现潜在的故障,并采取相应的措施进行预防或修复,从而避免电机故障导致的生产线中断或设备损坏。在进行电机监测时,通常会收集并分析电机的各种运行数据,如振动、温度、电流、电压等。通过对这些数据的实时监测和定期分析,可以判断电机的运行状态是否正常,是否存在异常或故障迹象。基于收集到的数据,可以采用多种故障预测技术来对电机的故障进行预测。其中,基于数据驱动的故障预测技术是一种常见的方法,它利用人工智能和机器学习算法对电机的运行数据进行处理和分析,以发现潜在的故障模式或趋势。监测电机各个相位之间的电流和电压关系,以检测是否存在相位不平衡或其他电气等问题。南通状态监测台
电机监测系统会产生大量的数据,包括振动数据、电流数据等。有效地处理和分析这些大量数据是一项挑战。南通状态监测台
电机状态监测是了解和掌握电机在使用过程中的状态,确定其整体或局部正常或异常,以及早期发现故障及其原因,并预报故障发展趋势的重要技术。这种监测主要包括识别电机状态和预测发展趋势两个方面。电机状态监测可以通过多种方式进行,包括电流监测、温度监测、振动监测、声音监测和光学监测等。电流监测可以判断电机是否正常运行,如电流过高或过低可能意味着电机受阻或负载过重。温度监测可以预防设备过热问题发生,过热可能会对设备性能和寿命造成负面影响。振动监测可以及时发现并解决设备的振动问题,如转子不平衡、轴承损坏等。声音监测可以及时发现并解决设备的噪音问题,如轴承损坏、不平衡等。光学监测则可以帮助设备操作员及时发现异常情况,例如电机的偏移、卡住或损坏等。除了以上监测方法,还有基于数学模型和人工智能的故障诊断方法。基于数学模型的方法主要是利用电机的数学模型,结合传感器采集的数据,对电机的状态进行估计和预测。基于人工智能的方法则主要是利用机器学习、深度学习等人工智能技术,对历史数据进行分析和学习,实现对电机状态的监测和故障预警。南通状态监测台