在体光纤成像记录对于成像结果的处理,需要依赖专业的图像分析软件,分割出目的信号和背景噪声,获得准确的荧光强度值。光学成像方法可分为基于荧光的方法和基于生物发光的方法。光学相对于设备小且较便宜。活的物体显微成像的缺点是它的有创性,因为需要通过手术创造一个窗口来观察感兴趣的结构和组织。宏观层析荧光成像可以无创、定量和三维方式测定荧光,但其空间分辨率比活的物体显微镜低(约1毫米)。光学成像的根本缺点是光的组织穿透率低。由于吸收和散射,荧光发射的可见光谱中的光只能穿透几百微米的组织。这个问题限制了大多数光学方法在小动物或人类表面结构研究中的应用。使用近红外光谱能够提高信号的组织穿透能力,并能降低了组织的自体荧光。在体光纤成像记录高功率的激光放大器和那些依赖于融合多个相同性质。十堰钙荧光单光纤成像技术服务
单光纤在体光纤成像记录与内窥镜结合,实现了超细内窥。超细内窥镜在一些特殊检测环境(如耳、鼻、心、脑等)中,可实现体内无创伤检查。人体耳蜗在人耳内部深处,由于耳道的结构复杂,很难从耳外观察内部的结构,采用超细内窥镜,可以让内窥镜通过耳道,直接进入耳朵内部,然后对内部结构进行观察。对于人体的细小腔道结构(如血管、乳管和支气管等),在体光纤成像记录以前无法从腔道内部进行检查,只能通过超声B超和医学CT等医学影像技术从体外进行成像,成像分辨率低,而且不能对腔道内部的生物状态进行实时观察。通过超细内窥镜,可以将光纤探头通过导管扩张器直接插入腔道,探头所在位置的图像直接显示到计算机或显示器屏幕上,医生可以直观地进行诊断和分析。神经元光纤成像记录在体光纤成像记录和散射介质成像的机理既有关联。
在体光纤成像记录是基于多模光纤的微弱荧光信号检测和记录系统,该系统能够长时间稳定的激发荧光,并检测荧光信号的微弱变化。用于在体记录动物群体神经元活动钙信号的动态变化,在脑功能研究中具有较多的用途,其具体特点和应用如下:1、仪器高度集成化,只需一台仪器,配合光纤记录系统电脑端软件则可以进行实时的记录及数据分析,实验简单便捷,实验前无需调试设备;2、在体光纤成像记录仪器稳定性及可移动性强,较高有4通道版本,可同时记录4只动物或一只动物4个位点。较高采样率达20000 HZ,信噪比高。3、所有传输光路通过光纤耦合,具有很强的抗干扰能力,同时不受外界光纤干扰。
在体光纤成像记录的优点可以非侵入性,实时连续动态监测体内的各种生物学过程,从而可以减少实验动物数量,及降低个体间差异的影响;由于背景噪声低,所以具有较高的敏感性;不需要外源性激发光,避免对体内正常细胞造成损伤,有利于长期观察;此外还有无放射性等其他优点。然而生物发光也有自身的不足之处:例如波长依赖性的组织穿透能力,光在哺乳动物组织内传播时会被散射和吸收,光子遇到细胞膜和细胞质时会发生折射,而且不同类型的细胞和组织吸收光子的特性也不尽相同,其中血红蛋白是吸收光子的主要物质;由于是在体外检测体内发出的信号,因而受到体内发光源位置及深度影响;另外还需要外源性提供各种荧光素酶的底物,且底物在体内的分布与药动力学也会影响信号的产生;由于荧光素酶催化的生化反应需要氧气、镁离子及 ATP 等物质的参与,受到体内环境状态的影响。在体光纤成像记录需要许多数据点。
在体光纤成像记录技术是在散射介质(或称为随机介质)成像的基础上发展起来的,在散射介质成像系统中,光经过强散射介质时,由于介质的随机性或不均匀性,光发生散射后在输出端形成散斑。当光经过光纤时,多模光纤中不同模式的光产生随机的相位延迟或者模间耦合导致光散射的产生,所以,单光纤成像和散射介质成像的机理既有关联,又有一定的区别。单光纤成像可以看做是散射介质成像技术的一个特例,光纤也被看做是一种特殊的散射介质。 经过近十年的研究和发展,单光纤成像技术在成像机理、成像质量和应用研究等方面都取得了长足的进步,这一技术为超细内窥镜技术的发展提供了新的方向,也使内窥镜在一些新的领域得到应用成为可能。 在体光纤成像记录硬件也有助于保证较高的成像质量。武汉钙荧光光纤成像记录技术原理
偏振是实现在体光纤成像记录的关键特性之一。十堰钙荧光单光纤成像技术服务
在体光纤成像记录荧光素酶的每个催化反应只产生一个光 子 , 通常肉眼无法直接观察到, 而且光子在强散射性的生物组织中传输时, 将会发生吸收、 散射、 反射、 透射等大量光学行为 。 因此,必须采用高 灵敏度的光学检测仪器( 如CCD camera)采集并定量检测生物体内所发射的光子数量, 然后将其转换成图像, 在体生物发光成像中的发光光谱范围通常为可见光到 近红外光波段, 哺乳动物体内血红蛋白主要吸收可见光, 水和脂质主要吸收红外线, 但对波长为 590~1500nm的红光至近红外线吸收能力则较差, 因此, 大部分波长超过600nm的红光, 经过散射、吸收后能够穿透哺乳动物组织, 被生物体外的高灵敏光学检测仪器探测到, 这是在体生物发光成像的理论基础。十堰钙荧光单光纤成像技术服务
上海司鼎生物科技有限公司是一家有着先进的发展理念,先进的管理经验,在发展过程中不断完善自己,要求自己,不断创新,时刻准备着迎接更多挑战的活力公司,在上海市等地区的医药健康中汇聚了大量的人脉以及**,在业界也收获了很多良好的评价,这些都源自于自身不努力和大家共同进步的结果,这些评价对我们而言是比较好的前进动力,也促使我们在以后的道路上保持奋发图强、一往无前的进取创新精神,努力把公司发展战略推向一个新高度,在全体员工共同努力之下,全力拼搏将共同上海司鼎生物科技供应和您一起携手走向更好的未来,创造更有价值的产品,我们将以更好的状态,更认真的态度,更饱满的精力去创造,去拼搏,去努力,让我们一起更好更快的成长!
在体光纤成像记录的工作原理是将光源入射的光束经由光纤送入调制器,在调制器内与外界被测参数的相互作用, 使光的光学性质如光的强度、波长、频率、相位、偏振态等发生变化,成为被调制的光信号,再经过光纤送入光电器件、经解调器后获得被测参数。整个过程中,光束经由光纤导入,通过调制器后再射出,其中光纤的作用首先是传输光束,其次是起到光调制器的作用。波长为2.0~1000微米的部分称为热红外线。我们周围的物体只有当它们的温度高达1000℃以上时,才能够发出可见光。相比之下,我们周围所有温度在对的零度(-273℃)以上的物体,都会不停地发出热红外线。所以,热红外线(或称热辐射)是自然界中存在较为较多的辐射。在...