企业商机
色谱填料基本参数
  • 品牌
  • Waters,日本信合,美国OV
  • 型号
  • Porapak,ov固定液,Hayesep,5A,13X
色谱填料企业商机

传统的色谱填料开发依赖大量实验试错,而计算化学和分子模拟正成为加速这一过程的强大工具。通过计算机模拟,可以在分子水平上理解填料与分析物之间的相互作用机制,预测分离性能,并指导新型填料的设计。分子对接和分子动力学模拟可以研究分析物分子在固定相表面(如C18链形成的相)的吸附构象、停留时间和相互作用能,从而解释选择性差异、预测保留顺序。例如,模拟可以揭示不同键合密度下C18链的构象(是伸直、弯曲还是形成团簇),以及这如何影响对刚性分子和柔性分子的分离。定量结构-保留关系(QSRR)模型则利用机器学习算法,将分析物的分子描述符(如辛醇-水分配系数logP、分子体积、氢键给受体数等)与其在不同色谱条件下的保留行为关联起来。一旦模型建立,可以预测新化合物的保留时间,或反向筛选出对目标分离物具有理想选择性的填料表面化学。计算化学还可用于设计全新的固定相材料。例如,通过高通量计算筛选数千种MOFs或COFs的结构,预测其对特定气体混合物或手性分子的分离潜能,然后指导实验合成。对于聚合物刷固定相,可以模拟不同刷密度、链长和化学组成下的传质行为。填料的溶胀性对于聚合物基质尤为重要,切换溶剂时需注意。西安Hayesep系列色谱填料配件

西安Hayesep系列色谱填料配件,色谱填料

正相色谱使用极性固定相(如硅胶、氰基、氨基、二醇基)和非极性流动相(如己烷、二氯甲烷),分离基于分析物的极性差异。硅胶是传统的正相填料,其表面硅羟基与样品分子形成氢键、偶极-偶极等相互作用。氰基(-CN)填料极性较弱,兼具正相和反相特性;氨基(-NH2)填料除了极性作用,还具有弱阴离子交换能力和与羰基化合物的特异性反应;二醇基填料极性适中,生物相容性好,常用于糖类分离。亲水作用色谱(HILIC)可视为“水性正相色谱”,使用极性固定相(通常是硅胶或极性键合相)和含高比例有机相(通常>60%乙腈)的流动相。HILIC模式下,极性化合物在填料表面的水富集层和流动相之间分配,实现保留。与反相色谱相比,HILIC对强极性和亲水性化合物(如糖类、氨基酸、核苷酸、多肽)具有更好保留,且与质谱兼容性较好(因使用高有机相,易于去溶剂化和离子化)。HILIC填料的多样性丰富。除了裸硅胶,还有酰胺、二醇、两性离子、混合模式等多种键合相。酰胺相(如TSKgelAmide-80)通过氢键作用提供选择性,对糖类分离效果优异;两性离子相(如ZIC-HILIC)同时带有磺酸基和季铵基,在宽pH范围内保持电中性,减少不必要的离子相互作用。苏州有机担体系列色谱填料报价表填料的筛分和分类是保证其粒径均一性的重要工艺。

西安Hayesep系列色谱填料配件,色谱填料

糖类和糖蛋白的分析是生命科学和生物制药中的挑战性课题,因其结构复杂、异构体多、极性大且缺乏生色团。色谱填料在其中扮演着重要角色。游离糖和寡糖分析:由于强亲水性,反相C18柱难以保留,通常需要衍生化(如PMP衍生)后分析,或直接使用其他模式。高效阴离子交换色谱结合脉冲安培检测是分析单糖和寡糖的经典方法,使用高pH氢氧化钠溶液作为流动相,填料为季铵盐型阴离子交换剂(如DionexCarboPac系列)。HILIC模式(酰胺柱、两性离子柱)也成为糖类分析的流行选择,因其与质谱兼容性好。糖蛋白的完整分析和肽图分析:对于完整糖蛋白,通常使用反相C4或C8柱(大孔径)或疏水作用色谱柱分离不同糖型。对于酶解后的糖肽分析,反相C18柱用于分离肽段,而富集糖肽则常用亲水作用固相萃取或基于凝集素(如ConA、WGA)、肼化学或亲水作用色谱填料的亲和富集方法。糖基化位点和糖型分析:将糖蛋白酶解后,用肽N-糖苷酶F(PNGaseF)释放糖链,释放出的糖链可用上述游离糖分析方法分析,而脱糖后的肽段则可用反相LC-MS/MS定位糖基化位点。为了解析复杂的N-糖链结构,可能需要多维分离技术,结合亲水作用、反相、甚至弱阴离子交换等多种填料。

除了主流的硅胶,其他金属氧化物如氧化铝(Al2O3)、氧化锆(ZrO2)、氧化钛(TiO2)和它们的混合氧化物也被用作色谱填料基质。它们具有一些硅胶所不具备的特性。氧化锆(锆胶)的化学稳定性极为突出,能耐强酸(pH1)和强碱(pH14),且热稳定性好(>200℃),可用于高温液相色谱和以水为流动相的色谱。其表面化学与硅胶不同,以锆羟基为主,可通过磷酸酯、膦酸等配体进行改性,形成稳定的配位键合相,用于分离磷酸化肽、核酸等。氧化钛(钛胶)表面具有强烈的路易斯酸性,对含磷化合物、羧酸和多羟基化合物有特异性吸附,用于磷酸化肽和糖肽的选择性富集。氧化铝(铝胶)表面具有酸性和碱性两种活性位点,主要用于正相色谱,分离烯烃、芳香族化合物和某些异构体,在石油化工分析中有传统应用。混合氧化物(如锆-硅、钛-硅)则试图结合不同氧化物的优点。然而,金属氧化物填料的发展受限于几个因素:制备高质量、窄粒径分布的球形颗粒工艺比硅胶复杂;表面化学修饰的试剂和反应路径不如硅胶的硅烷化反应成熟和多样化;成本通常较高。因此,它们主要应用于一些特殊领域,作为硅胶填料的有力补充。极性嵌入型填料有助于改善极性化合物的保留行为。

西安Hayesep系列色谱填料配件,色谱填料

离子交换色谱基于固定相上带电荷的官能团与样品离子之间的静电相互作用实现分离。阴离子交换填料携带正电荷基团(如季铵盐、二乙氨基),用于分离阴离子;阳离子交换填料携带负电荷基团(如磺酸基、羧基),用于分离阳离子。根据官能团解离常数的不同,又分为强离子交换剂(在宽pH范围内保持离子化,如季铵盐、磺酸基)和弱离子交换剂(pH依赖性大,如二乙氨基、羧基)。传统离子交换填料以聚合物基质为主(如琼脂糖、葡聚糖、聚甲基丙烯酸酯),因其亲水性和大孔结构适合生物大分子分离。但随着技术的发展,硅胶基和杂化基的离子交换填料也逐渐普及,它们具有更高的机械强度和更快的传质速度,适合HPLC分析。表面修饰方法包括直接键合离子型硅烷、接枝聚电解质刷、或引入含有离子基团的聚合物涂层。离子交换色谱的应用极为宽泛。在生物化学领域,用于蛋白质、多肽、核酸、寡糖的分离纯化,可根据表面电荷差异分离不同等电点的蛋白质;在环境分析中,用于无机阴离子(F-、Cl-、NO3-、SO4²-等)和阳离子(Li+、Na+、K+、Ca²+、Mg²+等)的测定;在制药领域,用于有机酸、碱的分离。填料的粒径分布越窄,柱效通常越高。南京Hayesep系列色谱填料怎么用

填料的寿命与待分析样品、流动相及操作条件密切相关。西安Hayesep系列色谱填料配件

尺寸排阻色谱(SEC,又称凝胶过滤色谱)根据分子尺寸(流体动力学体积)进行分离,大分子无法进入填料孔内,先被洗脱;小分子进入孔内,后被洗脱。SEC填料的关键参数包括排阻极限(完全无法进入孔的分子量)、渗透极限(能完全进入孔的分子量)和分离范围(介于两者之间的分子量范围)。填料的孔径分布决定了分离范围,窄孔径分布可获得线性良好的校正曲线。SEC填料主要分为用于水相系统的凝胶过滤色谱(GFC)和用于有机相系统的凝胶渗透色谱(GPC)。常见的水相填料有交联葡聚糖(Sephadex)、琼脂糖(Sepharose、Superose)、聚丙烯酰胺(Bio-GelP)和亲水改性硅胶(TSKgelSW系列)。有机相填料则包括交联聚苯乙烯(PS-DVB,如Styragel、Shodex)、多孔玻璃和表面疏水改性的硅胶。选择填料时需考虑:溶剂兼容性(避免溶胀或收缩)、pH稳定性、机械强度(能否耐受较高流速)以及是否与样品发生非特异性吸附。SEC柱的标定至关重要。通常使用一系列已知分子量的标准品(如聚乙二醇、蛋白质、聚苯乙烯)绘制保留时间(或体积)对分子量的对数图(校准曲线)。西安Hayesep系列色谱填料配件

上海欧尼仪器科技有限公司汇集了大量的优秀人才,集企业奇思,创经济奇迹,一群有梦想有朝气的团队不断在前进的道路上开创新天地,绘画新蓝图,在浙江省等地区的仪器仪表中始终保持良好的信誉,信奉着“争取每一个客户不容易,失去每一个用户很简单”的理念,市场是企业的方向,质量是企业的生命,在公司有效方针的领导下,全体上下,团结一致,共同进退,**协力把各方面工作做得更好,努力开创工作的新局面,公司的新高度,未来上海欧尼仪器科技供应和您一起奔向更美好的未来,即使现在有一点小小的成绩,也不足以骄傲,过去的种种都已成为昨日我们只有总结经验,才能继续上路,让我们一起点燃新的希望,放飞新的梦想!

与色谱填料相关的产品
与色谱填料相关的**
信息来源于互联网 本站不为信息真实性负责