中国《“十四五” 节能减排综合工作方案》中明确提出支持蓄冷技术应用,多个地区也据此出台了专项补贴政策。像深圳,对水蓄冷项目会按蓄冷量给予 40 - 80 元 /kWh 的补贴;广州则对采用 EMC 模式的项目额外给予 8% 的奖励。这些补贴政策从资金层面为用户提供了支持,有效降低了水蓄冷技术的投资门槛。以某商业综合体为例,其水蓄冷项目在申请深圳补贴后,初期投资成本减少约 12%,加快了投资回收期。政策的引导不仅激发了用户采用水蓄冷技术的积极性,还推动了该技术在更多场景中的普及,助力实现节能减排目标,促进绿色能源技术的发展与应用。工业园区部署水蓄冷系统,可削减变压器容量需求,节省基建投资。中国台湾零碳水蓄冷

水蓄冷系统具备应急备用电源功能,在突发停电时可提供 2-4 小时应急供冷,为数据中心、医院等关键设施的持续运行保驾护航。该系统依靠蓄冷罐内预存的冷量,在停电后无需电力驱动即可释放冷量,维持空调系统短时间运行。某医院采用双回路供电与水蓄冷备用结合的方案,当外部电源中断时,蓄冷罐立即切换至释冷模式,为手术室、ICU 等主要区域持续供冷 4 小时,避免因设备停机引发医疗事故。这种应急供冷能力无需额外的柴油发电机等备用电源,减少设备投资与维护成本,同时避免燃油发电的污染问题。水蓄冷系统的备用功能为关键场所提供了可靠的冷量保障,提升了基础设施的应急响应能力和运行安全性。编辑分享中国香港节能水蓄冷费用欧盟ErP指令要求,水蓄冷系统季节性能系数需达5.0以上。

据 MarketsandMarkets 数据显示,2024 年全球水蓄冷市场规模达到 25 亿美元,预计到 2029 年将增至 40 亿美元,期间复合年增长率(CAGR)为 9.8%。这一增长趋势主要由亚太地区推动,该区域在全球市场中贡献了超过 40% 的份额。中国、印度及东南亚地区成为市场增长的主要引擎,一方面得益于这些地区快速的城市化进程和建筑能耗增长,另一方面源于政策对节能技术的支持以及峰谷电价机制的普及。此外,欧美市场因既有建筑改造需求和可再生能源整合趋势,也保持稳定增长。全球水蓄冷市场的扩张,反映出节能技术在商业建筑、数据中心等领域的应用潜力不断释放,行业正朝着高效化、低碳化方向持续发展。
水蓄冷技术与光伏、风电等可再生能源结合,能有效解决能源供应的间歇性问题。在西北风电富集区,夜间低谷电价时段常与风电大发时段重合,水蓄冷系统可借此全额消纳弃风电力,实现 “绿色制冷”。如某风电场配套建设的水蓄冷项目,年消纳弃风电量超过 1500 万 kWh,这一数据相当于种植 7 万公顷森林的碳减排效益。这种技术组合通过储能调节,将不稳定的可再生能源转化为可利用的冷量资源,既提升了清洁能源的消纳效率,又为区域制冷提供了低碳解决方案。在新能源装机占比不断提升的背景下,水蓄冷与可再生能源的协同应用,为构建零碳能源系统提供了可行路径,推动制冷领域向绿色低碳转型。楚嵘水蓄冷技术降低变压器容量需求,减少企业电力增容投资。

典型水蓄冷系统主要由制冷机组、蓄冷罐、换热器及控制系统构成。夜间电价低谷时,制冷机组以低负荷状态运行,通过乙二醇溶液或载冷剂将冷量输送至蓄冷罐内,逐步降低水温实现冷量储存;白天用电高峰阶段,循环泵会将蓄冷罐中的冷水输送至空调末端,借助板式换热器与空调系统进行热量交换,释放储存的冷量。部分系统会采用分层蓄冷技术,通过布水器优化水流分布,减少冷热水混合现象,以此提高储能效率。这种系统通过各组件的协同运作,实现了电能与冷量的转换及储存,在平衡电网负荷、降低运行成本等方面发挥着重要作用。水蓄冷技术的相变材料研究,石墨烯复合物提升储能密度。中国台湾零碳水蓄冷
水蓄冷技术的低温腐蚀问题,需采用304不锈钢管道解决。中国台湾零碳水蓄冷
在食品加工、医药存储等场景中,生产环境对低温的要求十分严格,而且生产过程中存在间歇性的冷负荷需求。水蓄冷系统能够与生产工艺相结合,在夜间电价低谷时段制冰来存储冷量,到了白天则将这些冷量用于产品冷却或者车间降温。就像某乳制品厂,运用水蓄冷系统为发酵车间提供稳定的低温环境,这样做不仅避开了日间的尖峰电价,还让年运行成本降低了 25%。这种技术应用可以根据生产流程的冷负荷变化,灵活调节蓄冷和放冷的节奏,在满足严格低温要求的同时,有效利用电价差来降低成本,特别适合对温度敏感且冷负荷存在波动的生产场景,为企业实现节能与稳定生产的双重目标。中国台湾零碳水蓄冷