电镀法也是制备钛电极的重要手段。在电镀过程中,将钛基体作为阴极,浸入含有活性金属离子的电镀液中,通过施加合适的电流密度,使活性金属离子在钛基体表面还原沉积,形成活性涂层。例如,在制备钛基贵金属电极时,可以采用电镀法将金、铂等贵金属沉积在钛基体表面。电镀法能够精确控制涂层的厚度和成分,制备出具有均匀涂层的钛电极。同时,通过调整电镀液的配方和电镀工艺参数,还可以制备出具有特殊结构和性能的涂层,满足不同的应用需求 。电化学方法将色度从500倍降至10倍以下。吉林吸收塔电极除硬系统

循环水pH值的稳定对抑制腐蚀和结垢至关重要。电化学pH调节技术通过电解水反应(阳极:2H₂O→4H⁺+O₂+4e⁻;阴极:2H₂O+2e⁻→2OH⁻+H₂)实现酸碱的精细调控。采用分隔式电解槽时,阴极室pH可升至10-11用于防垢,阳极室pH降至2-3用于酸性清洗。某化工厂采用钛基铱钽电极系统,通过PLC控制电流密度(5-15 mA/cm²)将循环水pH稳定在8.5±0.3,相比传统酸碱加药减少药剂消耗60%。该技术特别适用于高碱度水质(M-alk>300 mg/L),但需注意阴极室可能生成Ca(OH)₂沉淀,需配置超声波防垢装置。河南循坏水电极设施电化学系统可使冷却塔的逼近温差降至 3℃。

难溶盐电极的氧化还原对中有一个组分为难溶盐或其他固相,它包含三个物相、两个界面,且在每一相界面上存在着单一的快速迁越过程,甘汞电极(Hg|Hg₂Cl₂|Cl⁻)便是典型。在甘汞电极中,甘汞与电解液的溶解平衡受电液中浓度较高的 Cl⁻所控制,Cl⁻在 Hg₂Cl₂| 电液界面上的交换速率很快,这使得甘汞电极的电极电势极为稳定,因此它成为常用的参比电极之一。部分书刊将这类电极称为第二类电极,在电化学测量等领域有着不可或缺的地位。
钛电极具有良好的稳定性,包括化学稳定性和机械稳定性。在长期的电化学过程中,其表面的活性涂层不易发生脱落、溶解或结构变化,能够保持稳定的电催化性能。同时,钛基体的度和良好的韧性,使得电极在受到机械振动、热应力等外界因素影响时,依然能够保持结构完整。例如,在电解水制氢设备中,钛电极需要在连续的电解过程中保持稳定的工作状态,其化学和机械稳定性确保了设备的长期稳定运行,减少了因电极性能下降而导致的设备停机维护次数。.电化学方法处理过程中不会产生泡沫。

循环水中的钙镁离子易形成碳酸钙和硫酸钙垢,电化学除垢技术通过阴极反应(2H₂O + 2e⁻ → H₂↑ + 2OH⁻)提高局部pH,促使成垢离子(Ca²⁺、Mg²⁺)以疏松形式析出并随排污水排除。采用网状不锈钢阴极时,垢层主要成分为文石型CaCO₃(非粘附性),可通过自动刮垢装置。关键参数包括电流密度(10-30 mA/cm²)、水温(<60℃)和停留时间(>30分钟)。某电厂循环水系统应用后,换热管结垢速率从3 mm/年降至0.5 mm/年,同时节水15%(减少排污量)。该技术的瓶颈在于高硬度水质(>500 mg/L CaCO₃)时能耗上升,需配合水质软化预处理。电化学系统的处理能力可灵活调节。吉林吸收塔电极除硬系统
电沉积Zn-PO₄涂层可使清洗周期延长6倍。吉林吸收塔电极除硬系统
臭氧氧化可高效降解循环水中的难降解有机物,电化学臭氧发生器(EOG)通过质子交换膜电解水产生高浓度臭氧(50-200gO₃/kWh)。以PbO₂阳极为例,臭氧产率比传统电晕法高30%,且无需空气预处理。某印染厂将EOG集成至循环水系统,色度去除率>95%,并减少了污泥产量。循环水中的Cu、Zn等重金属可通过电化学沉积在阴极回收。采用旋转阴极(转速50rpm)和脉冲电流(占空比20%)时,铜回收纯度达99.5%,电流效率>80%。某电镀厂循环水处理案例显示,年回收铜2.5吨,经济效益与环境效益明显。吉林吸收塔电极除硬系统