粒子计数传感器基本参数
  • 品牌
  • 普瑞思高
  • 型号
  • PG-25
  • 制作工艺
  • 集成
  • 输出信号
  • 数字型
  • 材料物理性质
  • 半导体
  • 加工定制
粒子计数传感器企业商机

    部分高精度场景会使用超声雾化器,利用超声波振动使悬浮液雾化,雾化粒径更均匀。干燥器:雾化后的液滴含有溶剂(通常为去离子水),需通过干燥器去除溶剂,避免液滴蒸发导致粒子粒径变化或团聚。常用干燥方式为扩散干燥(硅胶、分子筛吸附)或热干燥(低温加热蒸发,温度<50℃,防止粒子变形)。去团聚装置:干燥后的粒子可能存在团聚现象,需通过文丘里管或撞击器进行去团聚处理——利用气流加速产生的剪切力,将团聚体打散为单分散粒子。3.稀释与混匀系统雾化后的气溶胶浓度通常远高于粒子计数器的标定量程(如10⁶particles/cm³以上),需通过稀释将浓度降至标定所需范围(如10³~10⁵particles/cm³),同时保证浓度均匀。多级稀释器:采用层流稀释技术,通过准确控制稀释气(洁净过滤空气)与气溶胶的流量比,实现准确浓度稀释(稀释比可调范围10:1~1000:1)。稀释气需经过高效过滤器(HEPA/ULPA)过滤,确保无背景粒子干扰。混匀腔:为一个具有扰流结构的腔体,使稀释后的气溶胶充分混合,保证输出气溶胶的空间浓度均匀性(浓度偏差<5%)。混匀腔的设计需避免粒子壁损失。4.控制系统与辅助单元保障发生器的稳定运行和参数可追溯性。工业自动化设备中,粒子计数传感器可监测液压油、润滑油中的颗粒污染,提前预警设备磨损,延长机器寿命。江苏2.83L粒子计数传感器标准等级是什么

江苏2.83L粒子计数传感器标准等级是什么,粒子计数传感器

    激光光源粒子计数器响应曲线对粒子折射率敏感度及多值性分析激光光源粒子计数器(以下简称“粒子计数器”)的重要原理是基于米氏散射(MieScattering):当激光照射到粒子时,散射光强度与粒子尺寸、折射率、激光波长、散射角度等参数相关,仪器通过检测散射光信号强度反推粒子粒径,而“响应曲线”即散射光信号(或脉冲幅度)与粒子粒径的对应关系。粒子折射率(ParticleRefractiveIndex,PRI,通常用复折射率m=n+ik表示,n为实部,带表折射能力;k为虚部,带表吸收能力)是影响米氏散射的关键参数之一,其对响应曲线的敏感度及由此引发的“多值性”问题,直接决定粒子计数器的粒径测量精度,以下从原理、影响机制、多值性成因及工程应对展开分析。一、粒子折射率对响应曲线的敏感度机制1.米氏散射中的折射率权重根据米氏散射理论,散射光强度I的计算公式重要项为:I=8π2r2λ2⋅I0⋅∣S1(θ)∣2+∣S2(θ)∣2其中、为米氏散射振幅函数,其值直接依赖于粒子相对折射率m=np/nm(np为粒子折射率,nm为介质折射率,空气nm≈1)及粒子尺寸参数α=πd/λ(d为粒子粒径,λ为激光波长)。对于粒子计数器常用的近红外激光(如650nm、780nm)和亚微米/微米级粒子(μm)。江苏普瑞思高粒子计数传感器操作方法在环境监测领域粒子计数传感器为环保机构提供 PM2.5、PM10 等颗粒物的实时数据,成为空气污染治理的依据。

江苏2.83L粒子计数传感器标准等级是什么,粒子计数传感器

需要通过光电转换器的放大作用,把光脉冲转化为信号幅度较大的电脉冲,然后再经过电子线路的进一步放大和甄别,从而完成对大量电脉冲的计数工作。此时,电脉冲数量对应于微粒的个数,电脉冲的幅度对应于微粒的大小。光源光源是激光尘埃粒子计数器的关键部件,对仪器的性能影响很大。光源要求稳定性高、寿命长、不受干扰。激光尘埃粒子计数器的光源有普通光源和激光光源两种。普通光源为碘钨灯,体积大、发热量高、寿命短,开机后需要预热。激光光源为激光器,体积小、稳定性高、寿命长,常与检测腔及光检测器做成一体,组成传感器。常见的激光光源有HeNe激光器、激光二极管。采用普通光源的激光尘埃粒子计数器对μm以下的微粒信号响应很低,其信号幅度与计数器本身的噪声幅度相差无几,信号很难从噪声中检测出来。此类仪器虽然标有μm这一通道,但只适于测定大于μm特别是μm以上的微粒。由于激光的单色性好,光能量集中稳定,所以采用激光光源的激光尘埃粒子计数器其传感器有较高的信噪比,此类仪器有些能检测到μm的微粒。测量腔测量腔是进行微粒观测的空间,被采集的空气要从测量腔内穿过。仪器的光学系统使光源经透镜、狭缝照射到测量腔中。

    粒子计数器标定用的粒子发生器(又称标准粒子气溶胶发生器)是产生已知粒径、浓度且分布稳定的标准粒子气溶胶的重要设备,其构成需满足粒径准确可控、浓度均匀稳定、输出重复性高的标定要求,重要结构可分为粒子供给系统、气溶胶化系统、稀释与混匀系统、控制系统四大模块,部分高精度发生器还配备粒径分选与监测单元。一、重要构成模块及功能1.粒子供给系统该系统的作用是提供已知粒径、单分散性的标准粒子原料,是标定准确性的基础。标准粒子储存单元:存放用于标定的标准粒子,常见类型为聚苯乙烯乳胶球(PSL)粒子(粒径范围μm~20μm,粒径偏差<1%),也可使用二氧化硅粒子、金属氧化物粒子等。粒子通常以悬浮液形式储存,需保证无团聚。定量进样装置:采用微量注射泵或精密蠕动泵,准确控制悬浮液的输送速率(μL/min级别),确保单位时间内的粒子供给量稳定,直接决定气溶胶的基准浓度。2.气溶胶化系统该系统的重要是将液态悬浮的标准粒子转化为气相分散的气溶胶,同时避免粒子团聚,是发生器的重要执行单元。雾化器:比较常用的是压缩空气式雾化器(如Laskin喷嘴雾化器),通过高压洁净空气(或惰性气体)冲击悬浮液,将其破碎为包含标准粒子的微小液滴。粒子计数传感器覆盖 0.3~10μm 六通道粒径测量,计数效率高且相对误差控制在 ±15% 以内满足 ISO 21501 国际要求。

江苏2.83L粒子计数传感器标准等级是什么,粒子计数传感器

    70%、高温、腐蚀性气体高湿/高油雾环境计数虚高或偏低,误差10%-30%二、理论建模与量化分析(一)重叠损失的泊松过程建模重要假设:粒子进入探测区为泊松随机过程,单位时间入射率为λ(粒/s),探测区有效体积V,采样流量Q,浓度C=λQ/V。死时间修正模型:仪器死时间τ内无法响应新粒子,真实计数N_true与显示计数N_display关系为:N_true=N_display/(1-λτ),其中λ=C・Q/V。重叠概率计算:在时间t内无粒子进入的概率P(0)=e^(-λt),单粒子进入概率P(1)=λt・e^(-λt),重叠损失率L=1-[P(1)+P(0)]=1-e^(-λt)(1+λt),t为粒子通过探测区的时间(t=V/Q)。(二)采样传输损失的经验模型管道损失:大粒径粒子损失随管长L与粒径d增大,经验公式L_loss(%)=a・L・d^b(a、b为与管材/流速相关系数),如2m管对5μm粒子损失17%-27%。弯曲损失:每增加1个弯曲,损失率上升3%-5%,3个弯曲时损失可达10%(φ5mm管,≥μm)。静电吸附:绝缘管材(如普通塑料)易吸附1μm以下粒子,损失率比金属管高5%-15%。三、实验测量方法(一)重叠损失标定稀释法:用已知浓度的标准粒子源,通过分级稀释获得不同浓度点,测量显示值与真实值的偏差,拟合死时间τ与比较大允许浓度C_max。为汽车涂装车间打造 “漆面防护盾”,粒子计数传感器对标 ISO 5-6 级洁净标准实时监测 0.3~10μm 粒径粒子浓度。在线式粒子计数传感器标准等级是什么

粒子计数传感器主要依托光散射原理,经激光光源照射粒子产生散射,经光电探测器捕获信号来分析粒径与数量。江苏2.83L粒子计数传感器标准等级是什么

    确认其外观无损坏,各部件连接紧密无松动。随后,使用**的清洁工具对传感器和进气口进行清洁,去除可能存在的灰尘和杂质,确保测量通道畅通无阻。2.连接标定设备将标准粒子源、洁净空气源、流量计等标定设备与粒子计数器正确连接。确保连接管道密封良好,无泄漏现象。同时,根据粒子计数器的使用说明,设置好测量参数,如流量、测量时间等。3.零点校准在洁净空气源的作用下,对粒子计数器进行零点校准。这一步骤旨在消除仪器本身的背景噪声,确保在没有颗粒物的情况下,测量结果为零。零点校准的准确性直接影响到后续测量的准确性,因此需反复进行,直至结果稳定。4.量程校准使用标准粒子源,按照从小到大的顺序,逐步向粒子计数器中引入不同浓度的颗粒物。在每个浓度点下,记录粒子计数器的测量结果,并与标准值进行对比。通过调整仪器的校准系数,使测量结果与标准值尽可能接近。量程校准是标定过程中的关键环节,需耐心细致,确保每个浓度点的校准结果都准确可靠。5.重复性与线性度测试在完成量程校准后,还需对粒子计数器进行重复性与线性度测试。重复性测试旨在评估仪器在相同条件下多次测量的结果一致性。江苏2.83L粒子计数传感器标准等级是什么

与粒子计数传感器相关的**
信息来源于互联网 本站不为信息真实性负责