光刻相关图片
  • 山西氮化镓材料刻蚀,光刻
  • 山西氮化镓材料刻蚀,光刻
  • 山西氮化镓材料刻蚀,光刻
光刻基本参数
  • 产地
  • 广东
  • 品牌
  • 科学院
  • 型号
  • 齐全
  • 是否定制
光刻企业商机

曝光后烘烤是化学放大胶工艺中关键,也是反应机理复杂的一道工序。后烘过程中,化学放大胶内存在多种反应机制,情况复杂并相互影响。例如各反应基团的扩散,蒸发将导致抗蚀刑的组成分布梯度变化:基质树脂中的去保护基团会引起胶膜体积增加但当烘烤温度达到光刻胶的玻璃化温度时基质树脂又并始变得稠密两者同时又都会影响胶膜中酸的扩散,且影响作用相反。这众多的反应机制都将影响到曝光图形,因此烘烤的温度、时间和曝光与烘烤之间停留的时间间隔都是影响曝光图形线宽的重要因素。图形反转胶的显影过程。山西氮化镓材料刻蚀

山西氮化镓材料刻蚀,光刻

当图形尺寸大于3μm时,湿法刻蚀广用于半导体生产的图形化过程。湿法刻蚀具有非常好的选择性和高刻蚀速率,这根据刻蚀剂的温度和厚度而定。比如,氢氟酸(HF)刻蚀二氧化硅的速度很快,但如果单独使用却很难刻蚀硅。因此在使用氢氟酸刻蚀硅晶圆上的二氧化硅层时,硅衬底就能获得很高的选择性。相对于干法刻蚀,湿法刻蚀的设备便宜很多,因为它不需要真空、射频和气体输送等系统。然而当图形尺寸缩小到3μm以下时,由于湿法刻蚀为等向性刻蚀轮廓(见图2),因此继续使用湿法刻蚀作为图形化刻蚀就变得非常困难,利用湿法刻蚀处理图形尺寸小于3μm的密集图形是不可能的。由于等离子体刻蚀具有非等向性刻蚀轮廓,在更精密的图形化刻蚀中,等离子体刻蚀就逐渐取代了湿法刻蚀。湿法刻蚀因高选择性被用于剥除晶圆表面的整面全区薄膜。珠海光刻服务自动化光刻设备大幅提高了生产效率和精度。

山西氮化镓材料刻蚀,光刻

在光刻胶技术数据表中,会给出一些参考的曝光剂量值,通常,这里所写的值是用单色i-线或者BB-UV曝光。正胶和负胶的光反应通常是一个单光子过程与时间没太大关系。因此,在原则上需要多长时间(从脉冲激光的飞秒到接触光刻的秒到激光干涉光刻的小时)并不重要,作为强度和时间的产物,作用在在光刻胶上的剂量是光强与曝光时间的产物。在增加光强和光刻胶厚度较大的时候,必须考虑曝光过程中产生的热量和气体(如正胶和图形反转胶中的N2排放)从光刻胶膜中排出时间因为热量和气体会导致光刻胶膜产生热和机械损伤。衬底的反射率对光刻胶膜实际吸收的曝光强度有影响,特别是对于薄的光学光刻胶膜。玻璃晶圆的短波光强反射约10%,硅晶片反射约30%,金属薄膜的反射系数可超过90%。哪一种曝光剂量是“比较好”也取决于光刻工艺的要求。有时候稍微欠曝光可以减小这种衬底反射带来的负面影响。在厚胶情况下,足够的曝光剂量是后续合理的较短显影时间的保障。

电子束曝光指使用电子束在表面上制造图样的工艺,是光刻技术的延伸应用。它的特点是分辨率高、图形产生与修改容易、制作周期短。它可分为扫描曝光和投影曝光两大类,其中扫描曝光系统是电子束在工件面上扫描直接产生图形,分辨率高,生产率低。投影曝光系统实为电子束图形复印系统,它将掩模图形产生的电子像按原尺寸或缩小后复印到工件上,因此不仅保持了高分辨率,而且提高了生产率。电子束曝光系统一般包括如下配件:电子束源:热电子发射和场发射、电磁透镜系统、Stage系统、真空系统、控制系统。通常来说,电子束的束斑大小决定了曝光设计线宽,设计线宽应至少为束斑的3倍以上。由于电子束的束斑大小和束流大小、光阑大小等直接的相关,而束流大小、步距等又决定了曝光时间的长短。因此,工作时需要综合考虑决定采用的束流及工作模式。双面镀膜光刻是针对硅及其它半导体基片发展起来的加工技术。

山西氮化镓材料刻蚀,光刻

光刻工艺就是将光学掩膜版的图形转移至光刻胶中。掩膜版按基板材料分为树脂和玻璃基板,其中玻璃基板又包含石英玻璃,硅硼玻璃,苏打玻璃等,石英玻璃硬度高,热膨胀系数低但价格较高等主要用于高精度领域;按光学掩膜版的遮光材料可分为乳胶遮光模和硬质遮光膜,硬质遮光膜又细分为铬,硅,硅化钼,氧化铁等。在半导体领域,铬-石英版因其性能稳定,耐用性,精度高等在该领域被广泛应用。我国的光学掩膜版制作始于20世纪60年代,当时基板主要进口日本“樱花”玻璃及美国柯达玻璃。1978年,我国大连玻璃厂当时实现制版玻璃的产业化,成品率10%左右。80年代后期,基板主要采用平拉玻璃。到90年代,浮法玻璃技术技术较为成熟,开始使用浮法玻璃作为基板,2005年使用超白浮法玻璃作为基板。2010年以后,光掩模基板石英玻璃开始投产,其质量能基本满足IC产业光掩模版基板的高精度需求。随着市场对大直径硅片的需求,大尺寸玻璃基板也同时趋向于大型化,对光掩模石英玻璃基板也提出了更高的要求。光刻机的校准和维护是确保高质量产出的基础。山西氮化镓材料刻蚀

光刻是集成电路和半导体器件制造工艺中的关键性技术。山西氮化镓材料刻蚀

随着光刻对准技术的发展,一开始只是作为评价及测试光栅质量的莫尔条纹技术在光刻对准中的应用也得到了更深层的开发。起初,其只能实现较低精度的人工对准,但随着细光栅衍射理论的发展,利用莫尔条纹相关特性渐渐也可以在诸如纳米压印光刻对准等高精度对准领域得到应用。莫尔条纹是两条光栅或其他两个物体之间,当它们以一定的角度和频率运动时,会产生干涉条纹图案。当人眼无法看到实际物体而只能看到干涉花纹时,这种光学现象就是莫尔条纹。L.Rayleigh对这个现象做出了解释,两个重叠的平行光栅会生成一系列与光栅质量有关的低频条纹,他的理论指出当两个周期相等的光栅栅线以一定夹角平行放置时,就会产生莫尔条纹,而周期不相等的两个光栅栅线夹角为零(栅线也保持平行)平行放置时,也会产生相对于光栅周期放大的条纹。山西氮化镓材料刻蚀

与光刻相关的**
信息来源于互联网 本站不为信息真实性负责