针对柔性电子器件的低温制备需求,研究所开发了低温磁控溅射工艺技术。通过优化溅射功率与工作气压参数,在室温条件下实现了 ITO 透明导电薄膜的高质量沉积,薄膜电阻率低至 1.5×10⁻⁴ Ω・cm,可见光透射率超过 90%。创新的脉冲偏压辅助设计有效提升了薄膜在柔性基底上的附着力,经 1000 次弯曲循环测试后,电阻变化率小于 5%。该技术打破了传统高温沉积工艺对柔性基底的限制,已成功应用于柔性显示面板的电极制备,推动了柔性电子产业的技术升级。磁控溅射常用来沉积TSV结构的阻挡层和种子层,通过对相关参数的调整和引入负偏压。福建高温磁控溅射

广东省科学院半导体研究所在磁控溅射技术的极性调控领域取得 突破,其开发的双向脉冲双靶闭合式非平衡磁控溅射系统独具特色。该系统将两个磁控靶连接于同一脉冲电源,通过周期性变换靶材极性,使两靶交替充当阴极与阳极 —— 阴极靶执行溅射沉积的同时,阳极靶实现表面清洁,形成独特的 “自清洁” 效应。这种设计从根本上解决了传统溅射中靶材表面污染导致的薄膜质量下降问题,尤其适用于高精度半导体薄膜制备。相较于单极性溅射系统,该技术不仅延长了靶材使用寿命,还使薄膜厚度均匀性误差控制在 5% 以内,为大面积镀膜的工业化生产提供了 技术支撑。福建高温磁控溅射磁控溅射技术具有高沉积速率、高沉积效率、低温沉积等优点,可以很大程度的提高生产效率。

磁控溅射制备薄膜应用于哪些领域?在光学镜片和镜头领域,磁控溅射技术同样发挥着重要作用。通过磁控溅射技术可以在光学镜片和镜头表面镀制增透膜、反射膜、滤光膜等功能性薄膜,以改善光学元件的性能。增透膜能够减少光线的反射,提高镜片的透光率,使成像更加清晰;反射膜可用于制射镜,如望远镜、显微镜中的反射镜等;滤光膜则可以选择特定波长的光线通过,用于光学滤波、彩色成像等应用。这些功能性薄膜的制备对于提高光学系统的性能和精度具有重要意义。
定期检查与维护磁控溅射设备是确保其稳定运行和降低能耗的重要措施。通过定期检查设备的运行状态,及时发现并解决潜在问题,可以避免设备故障导致的能耗增加。同时,定期对设备进行维护,如清洁溅射室、更换密封件等,可以保持设备的良好工作状态,减少能耗。在条件允许的情况下,采用可再生能源如太阳能、风能等替代传统化石能源,可以降低磁控溅射过程中的碳排放量,实现绿色生产。虽然目前可再生能源在磁控溅射领域的应用还相对有限,但随着技术的不断进步和成本的降低,未来可再生能源在磁控溅射领域的应用前景广阔。磁控溅射过程中,靶材中毒是一个需要避免的问题。

在磁控溅射靶材的回收与再利用领域,研究所开发了环保型再生工艺。针对废弃靶材的成分特性,采用机械研磨与化学提纯相结合的预处理方法,去除表面氧化层与杂质,再通过磁控溅射原理进行靶材再生 —— 将提纯后的材料作为靶材,通过溅射沉积于新的衬底上形成再生靶材。该工艺使靶材回收率达到 85% 以上,再生靶材的溅射性能与原生靶材相比偏差小于 5%。不仅降低了资源消耗,更使靶材制备成本降低 40%,为半导体产业的绿色发展提供了可行路径。电子束撞击目标材料,将其能量转化为热能,使目标材料加热到蒸发温度。福建高温磁控溅射
磁控溅射由于其内部电场的存在,还可在衬底端引入一个负偏压,使溅射速率和材料粒子的方向性增加。福建高温磁控溅射
设备成本方面,磁控溅射设备需要精密的制造和高质量的材料来保证镀膜的稳定性和可靠性,这导致设备成本相对较高。耗材成本方面,磁控溅射过程中需要消耗大量的靶材、惰性气体等,这些耗材的价格差异较大,且靶材的质量和纯度直接影响到镀膜的质量和性能,因此品质高的靶材价格往往较高。人工成本方面,磁控溅射镀膜需要专业的工程师和操作工人进行手动操作,对操作工人的技术水平和经验要求较高,从而增加了人工成本。此外,运行过程中的能耗也是磁控溅射过程中的一项重要成本,包括电力消耗、冷却系统能耗等。福建高温磁控溅射