“支护 - 主体” 结合技术可减少临时工程浪费,常见形式包括 “两墙合一”(地下连续墙作为主体结构外墙)、“支撑换撑”(利用主体楼板替代临时支撑)等。“两墙合一” 中,地下连续墙需满足结构受力与防渗双重要求,墙面需进行凿毛处理并预埋接驳器,与主体结构钢筋连接,适用于深基坑及地下水位高的工程,可节省工期 30% 以上。换撑技术在主体结构施工至某一楼层后,通过设置换撑传力带将围护结构荷载转移至楼板,拆除上部临时支撑,需确保换撑节点强度≥支撑设计强度的 80%,且换撑过程中围护结构变形≤5mm/d。该技术尤其适用于超深基坑(>20m),可明显降低支护成本。基坑支护的稳定性和耐久性直接影响到整个建筑项目的质量和安全。河南基坑支护
土钉墙支护,包含单一土钉墙、预应力锚杆复合土钉墙等多种类型,适用于特定地质条件和基坑深度的项目。单一土钉墙通常用于地下水位以上或降水后的非软土基坑,且深度不超过 12m;预应力锚杆复合土钉墙可用于类似地质条件但基坑深度不超过 15m 的情况。土钉墙施工遵循 “超前支护,分层分段,逐层施作,限时封闭,严禁超挖” 原则。每层土钉施工后,需按要求抽查土钉抗拔力,确保其能有效锚固土体。开挖后,24h 内(淤泥质土为 12h 内)要完成土钉安放和喷射混凝土面层作业,上一层土钉注浆 48h 后才可开挖下层土方。郑州基坑支护施工基坑支护设计应保持与相关单位的有效沟通。
相邻场地的基坑施工会产生相互影响与制约,增加事故诱发因素。例如,一侧场地打桩施工产生的振动,可能影响相邻场地基坑支护结构的稳定性;降水施工导致地下水位下降,可能引起周边场地土体沉降,对邻近基坑造成不利影响;挖土施工若未合理安排施工顺序,可能导致土体侧向挤压,破坏相邻场地的支护结构。为减少此类影响,在相邻场地基坑施工前,建设单位、设计单位和施工单位应加强沟通协调,共享工程信息,综合考虑场地条件和施工进度,制定合理的施工方案,采取必要的防护措施,如设置隔离桩、加强监测频率等,避免因相互干扰引发安全事故。
排桩支护作为常见的基坑支护形式,拥有多种组合方式。桩撑形式通过在排桩间设置支撑,有效抵抗土体侧压力,保障基坑稳定,适用于较深基坑且周边场地较开阔的情况;桩锚则借助锚杆将排桩与稳定土体相连,依靠土体锚固力平衡侧向力,常用于场地有限但地质条件较好的区域;排桩悬臂结构较为简单,适用于较浅基坑,其稳定性主要依赖桩身自身强度和入土深度。在施工时,排桩需间隔成桩,已完成浇筑混凝土的桩与邻桩间距应大于 4 倍桩径,或间隔施工时间大于 36h,以此确保桩身质量及周边土体稳定。基坑支护的技术不断创新和发展,为施工提供了更多的选择和可能性。
基坑开挖期间,地下水控制是基坑支护不可或缺的部分,关乎支护结构稳定性及周边环境安全。地下水控制方法多样,集水明排是基本方式,通过在基坑周边设置排水沟、集水井,将地下水汇集并抽排至坑外,适用于地下水位较浅、水量较小的情况。降水则借助井点降水等技术,降低地下水位,减少土体含水量,提高土体强度,防止坑底隆起、流砂等现象,常见井点类型有轻型井点、喷射井点、管井井点等,需根据含水层特性、降水深度等因素合理选用。截水采用连续的隔水帷幕,如水泥土搅拌桩帷幕、高压旋喷桩帷幕等,阻止地下水流入基坑。回灌技术则是在降水过程中,为避免周边建筑物因地下水位下降产生沉降,通过回灌井向土层中补充水分,维持地下水位稳定。在施工过程中,基坑支护的稳定性需要得到实时监控,以确保施工安全。河南基坑支护
临时地下水排泵设备是基坑支护中的关键设施。河南基坑支护
在软土、高地下水位及其他复杂场地条件下开挖基坑,极易出现各类病害。土体滑移是常见问题之一,由于软土抗剪强度低,在基坑开挖卸荷作用下,土体易沿软弱面滑动,导致基坑边坡失稳;基坑失稳可能由多种因素引发,如支护结构强度不足、地下水渗流作用等;桩体变位会影响支护结构的承载能力和稳定性;坑底隆起则是因为基坑开挖后,坑底土体受到向上的卸荷力,当土体强度不足以抵抗时,就会发生隆起现象;支挡结构严重漏水、流土以致破损,会削弱支护结构强度,引发周边土体流失,危及周边建筑物、地下构筑物及管线安全。针对这些病害,需在设计阶段充分考虑场地条件,采取针对性措施,如加强支护结构设计、完善地下水控制方案等,并在施工过程中加强监测,及时发现并处理问题。河南基坑支护