变压器振动主要包括OLTC切换时的瞬态振动、电流通过绕组时电动力引起的绕组振动、硅钢片的磁致伸缩及硅钢片接缝处与叠片之间的漏磁导致铁芯振动、以及冷却装置工作时的振动。其中,由冷却系统引起的基本振动频率小于100Hz,不作为变压器的分析内容。变压器内部的声纹振动信号通过绝缘油、支撑单元、加强筋结构等多种途径传播至变压器外壁,可由安装于外壁的声纹振动传感器测得。
OLTC切换过程中,分接选择器动作、切换开关动作、动静触头碰撞等机械动作产生声纹振动信号,信号包含触头分合状态、三相触头是否同期、触头表面是否平整、切换是否到位等信息,可反映OLTC结构磨损、卡滞、松动、变形等故障。切换过程中若储能弹簧性能发生改变或储能过程中存在机构卡塞等现象,必然伴随着电机驱动力矩的变化,从而使驱动电机电流发生变化。因此,可通过监测驱动电机电流信号与声纹振动信号的结合分析,可更加有效的评价OLTC在线运行状态下的健康态势评价与故障类型诊断。 杭州国洲电力科技有限公司振动声学指纹在线监测软件的升级与维护。国洲电力在线监测案例

趋势分析功能在电力设备的智能运维发展中具有广阔的应用前景。随着人工智能和大数据技术的不断发展,将趋势分析与智能算法相结合,能够实现对电力设备局部放电的智能预测和诊断。例如,利用深度学习算法对大量的局部放电趋势数据进行学习和训练,建立局部放电故障预测模型。该模型能够根据当前的局部放电趋势数据,预测设备在未来一段时间内发生故障的概率和类型,提前为运维人员提供准确的故障预警信息。同时,结合物联网技术,将局部放电监测系统与设备的智能运维平台深度融合,实现设备状态的实时监测、智能诊断和远程控制,推动电力设备运维向智能化、高效化方向发展。智能在线监测指纹监测参数在线监测数据的采样频率一般设置为多少?

异常报警功能使系统成为电力设备安全运行的 “守护者”。当系统根据预先设定的报警方案,检测到异常的局部放电检测结果时,迅速做出响应。以阀值报警为例,若监测到局部放电信号幅值超过预设的严重故障阈值,系统立即判定设备出现严重故障,以强光闪烁、高分贝声音以及短信通知等多种方式,向运维人员发出警报。同时,自动捕捉并记录启动报警的局放信号,这些记录的数据对于后续深入分析故障原因、评估设备损坏程度具有重要价值,为维修工作提供有力依据。
对 GIS 设备机械性故障监测系统的运行情况进行定期评估和优化。随着设备的运行和环境的变化,监测系统的性能可能会受到影响。通过定期对监测系统的准确性、可靠性等指标进行评估,及时发现系统存在的问题并进行优化。例如,对振动传感器的监测精度进行定期校准,优化数据处理算法以提高故障诊断的准确性。同时,根据新出现的机械性故障类型和监测需求,对监测系统进行功能升级,确保监测系统始终能够满足 GIS 设备机械性故障监测的要求。声学指纹监测时,对不同类型声音的区分度参数是多少?

系统时间同步功能设置至关重要。在多传感器协同监测的情况下,确保各传感器数据采集时间的一致性,对于准确分析局部放电信号的传播路径、相位关系等信息意义重大。通过与高精度时钟源进行同步,如全球定位系统(GPS)时钟,软件能使分布在不同位置的传感器在同一时间基准下工作。这样,当对大型电力设备进行***监测时,从各个传感器获取的数据时间戳精确对应,为后续复杂的数据分析提供可靠基础,避免因时间不同步导致的分析误差,提高故障诊断的准确性。高压开关监测系统的触头温度监测功能精度如何?便携式声纹在线监测监测系统内容
技术在不同温度环境下,参数会有怎样的变化?国洲电力在线监测案例
除了振动监测,还可以采用声学监测技术来辅助检测 GIS 设备的机械性故障。当设备发生机械性运动时,会产生特定频率的声音信号。通过在设备周围安装声学传感器,如麦克风阵列,能够捕捉到这些声音信号。利用声学信号处理技术,对采集到的声音信号进行分析,识别出与机械性故障相关的声音特征。例如,开关触头接触异常时可能会产生异常的摩擦声,通过分析声学信号中的频率成分和强度变化,可判断触头的接触状态,及时发现潜在的机械性故障。国洲电力在线监测案例