系统时间同步功能设置不仅在多传感器监测系统中至关重要,在与其他电力设备监测系统协同工作时也具有重要意义。例如,当局部放电在线监测系统与电力设备的温度监测系统、振动监测系统等进行数据融合分析时,确保各系统时间同步,能够准确关联不同类型监测数据之间的关系。在分析某台高压电机故障时,通过将局部放电监测数据与温度监测数据在同一时间基准下进行对比,发现当局部放电幅值突然增大时,电机绕组温度也随之升高,从而更准确地判断故障原因,为设备维修提供更***的依据。该技术在港口码头设备监测中,对提高运输效率有何帮助?便携式声纹在线监测技术指导

GZAFV-01系统的功能特点
GIS在带电运行过程中除了机械故障会导致异常振动外,放电性故障(如绝缘子内部缺陷、螺丝松动、悬浮电位放电、毛刺前列放电、金属微粒放电等)也会导致声纹振动信号的产生。因此,通过深入研究GIS本体的声纹振动信号特征可发现GIS机械性故障及放电性故障,具有监测***、监测结果互相补充的特点。基于声纹振动信号的在线监测,可在GIS带电运行状态下及时发现潜在故障,并及时预警,从而延长使用寿命,提高电网运行的可靠性。我公司以声纹振动信号为主,结合电流、位移等其他参量的在线监测,开发了故障诊断算法(***软著权)并提取相关特征参量研制完成的GZAFV-01型声纹振动监测系统,适用于开关设备的带电监测(便携诊断式、手持巡检式)、在线监测(长期固定式、短期移动式)。GZAFV-01系统由声纹振动传感器(压电式加速度计)、位移传感器、电流传感器、IED(在线监测式)/主机(便携/手持式)、云服务器、通讯单元、供电单元等组件构成,架构示意图如下图3.1所示,标准1U的IED/便携式主机。 便携式声纹在线监测技术指导对于复杂结构设备的振动监测,技术参数如何优化?

智能算法在 GIS 设备机械性故障监测中也具有广阔的应用前景。利用机器学习算法,如支持向量机、人工神经网络等,对大量的振动和声学监测数据进行学习和训练。通过建立故障诊断模型,使算法能够自动识别设备的正常运行状态和各种机械性故障状态。例如,将历史监测数据中的正常状态数据和已知的机械性故障状态数据作为训练样本,训练人工神经网络模型。经过训练的模型可以对实时监测数据进行快速分析,准确判断设备是否存在机械性故障,并预测故障的发展趋势,为设备的维护和检修提供科学依据。
3.3.2.3基频信号能量比(E)100Hz基频分量时域信号能量占信号总能量的比值,计算公式:E=jmS1j2jmSj2,其中S1为100Hz基频分量的时域信号,Sj为原始信号,j为采样索引值。正常状态下,由于100Hz基频分量为声纹振动频谱图的主要成分,基频信号能量比应较大;存在故障时,谐波分量增加且峰值频率发生偏移,基频信号能量比变小。3.3.2.4互相关系数(r)正常状态与实测的声纹振动信号频谱图之间的相似度,计算公式:r=i=0N-1[Xi-X][Yi-Y]i=0N-1[Xi-X]2i=0N-1[Yi-Y]2,其中Xi和Yi分别为正常状态与实时测得声纹振动信号的频域分布,X和Y为对应信号的平均值,互相关系数范围为0~1。◆正常运行时,相关系数应接近于1。◆存在故障时,信号频率分布发生改变,互相关系数减小。监测系统能否自动调整参数以适应不同工况?

GIS运行时,电流通过高压导体时产生的电动力引起振动,由于导体所受电动力正比于负载电流的平方,GIS本体振动产生的声纹振动信号的基频为100Hz。当存在机械故障时,声纹振动信号的频谱分布将发生改变,产生谐波分量。GIS本体机械型缺陷主要是指内部存在开关触头接触异常、导电杆接触不良、母线卡簧松动、屏蔽罩松动等异常时,在交变电场作用下发生异常振动,长期振动可能导致导电杆和绝缘件松动,易造成绝缘事故。异常振动还可能造成SF6气体泄漏,损坏绝缘子和绝缘支柱,影响外壳接地牢固,危及GIS运行安全。在教育科研领域,振动声学指纹监测技术对实验设备监测有什么意义?便携式声纹在线监测技术指导
杭州国洲电力科技有限公司振动声学指纹在线监测系统的数据存储方案。便携式声纹在线监测技术指导
除了振动监测,还可以采用声学监测技术来辅助检测 GIS 设备的机械性故障。当设备发生机械性运动时,会产生特定频率的声音信号。通过在设备周围安装声学传感器,如麦克风阵列,能够捕捉到这些声音信号。利用声学信号处理技术,对采集到的声音信号进行分析,识别出与机械性故障相关的声音特征。例如,开关触头接触异常时可能会产生异常的摩擦声,通过分析声学信号中的频率成分和强度变化,可判断触头的接触状态,及时发现潜在的机械性故障。便携式声纹在线监测技术指导