离子氮化工艺技术应用案例:曲轴的离子氮化工艺流程:毛胚检验、写编号、钻两端面中心孔、车大头外圆及端面、粗车主轴颈及小头、打编号、粗车主轴颈、大小头及小头倒角、铣定位面、精洗连杆颈、车大头工艺外圆及平衡块外圆、粗磨连杆颈、钻横油孔、钻斜油孔、斜油孔攻丝及油孔倒角、打磨棱角毛刺、平小头端面,精车小头并攻丝、粗车大头孔、半精磨主轴颈及大头外圆、精车轴承孔、半精磨连杆颈、精磨连杆颈、钻法兰孔并攻丝、精磨小头、铣键槽、动平衡、去重、精磨大头外圆及端面、油孔口倒角并研磨、清洗、打热处理批号、离子氮化热处理、检查跳动量、手攻丝、油孔口抛光、轴颈抛光、探伤、清洗、检验、清洗、涂蚀、包装。离子氮化的工艺选择及局部防渗。广州小型离子氮化对比
离子氮化能提高低型腔热锻模具寿命,离子氮化是通过提高模具表面硬度,增加表面压应力的原理,来提高热锻模具使用寿命。离子氮化适合用于低型腔热锻模具,但不适合用于深型腔热锻模具。离子氮化是为了提高工件表面耐磨性、耐疲劳性、耐蚀性及耐高温等性能,利用等离子辉光放电在离子氮化设备内制备氮化层的一种工艺方法。离子氮化分三个阶段,第一阶段活性氮原子产生,第二阶段活性氮原子从介质中迁移到工件表面,第三阶段氮原子从工件表面转移到芯部。其中第一阶段电离和第三阶段扩散机制比较清楚,第二阶段活性氮原子如何从介质中迁移到工件表面的机理尚存争议,普遍认可的是“溅射-沉积”理论。具体原理为:高能离子轰击工件表面,铁原子脱离基体飞溅出来和空间中的活性氮原子反应形成渗氮铁,渗氮铁分子凝聚后再沉积到工件表面。渗氮铁在一定的渗氮温度下分解成含氮量更低的氮铁化合物,释放出氮原子,渗氮铁不断形成为一定厚度的渗氮层。珠海合金钢离子氮化设备制造离子氮化可以直接对S136,304,316等不锈钢制品的氮化处理。
离子氮化是一种先进的表面处理技术,它基于辉光放电原理。在真空炉内,通入适量的氮气或氮氢混合气体,当炉内气压达到一定值并施加直流电压时,气体被电离,产生大量的氮离子和电子。氮离子在电场作用下,高速轰击工件表面,将动能转化为热能,使工件升温。同时,氮离子在工件表面获得电子变成氮原子,渗入工件表层,并与金属原子发生反应,形成氮化层。与传统氮化工艺不同,离子氮化依靠离子的轰击作用来实现氮化过程,这种方式使得氮化速度更快,氮化层质量更易控制,为众多行业的材料表面性能优化提供了高效解决方案。
离子氮化后零件的“肿胀”现象及防治对策之影响“肿胀”的因素,氮化后尺寸的胀大量取决于零件表层的吸氮量。因而,影响吸氮量的因素均是影响“肿胀”的因素。影响“肿胀”的因素主要有:材料中合金元素的含量、氮化温度、氮化时间、氮化气氛中的氮势等。材料中合金元素含量越高,零件氮化后的“肿胀”越大。氮化温度愈高、氮化时间愈长,零件氮化后的“肿胀”愈大。氮化气氛的氮势越高,零件氮化后的“肿胀”愈大。一般说来,在选材、工艺制定正确的前提下,如能合理装炉,正确操作,则工件的“肿胀”是有一定规律的。掌握了“肿胀”的规律后,即可在氮化处理前的还有就是一道加工工序中根据“肿胀”量使工件尺寸处于负偏差,工件经氮化处理后尺寸可正好处于要求的尺寸公差范围内,因而可省去氮化后的再次加工。离子渗氮的工艺参数较多,包括渗氮温度,时间,炉气压力,气源,气体流量,电压,电流,抽气速率等。
离子渗氮生过程中,如果工艺不当可能出现硬度偏低的情况。生产实践中,工件渗氮后其表面硬度有时达不到工艺规定的要求,轻者可以返工,重者则造成报废。造成硬度偏低的原因是多方面的:有设备方面的原因,如系统漏气造成氧化;有选材方面的原因,如材料选择不恰当;有前期热处理方面的原因,如基本硬度太低,表面脱碳等;有工艺方面的原因,如渗氮温度过高或过低,时间短或氮势不足而造成渗层太薄等等。只有根据具体情况,找准原因,问题才会得以解决。离子氮化炉的绝缘材料。金属表面离子氮化保养
离子氮化技术是我国70年代新兴的表面强化技术。广州小型离子氮化对比
离子氮化处理注意事项之降温,保温到预定时间后,开始向炉体内大量给冷却水,当炉体完全冷却后,即关闭蝶阀,停真空泵,停高压,并向炉内大量供氨,待炉内充满氨气,即将氨气供给降为微量,保持正压。待炉内温度降到180℃以下时,停氨气,停冷却水,重新启动真空泵。抽至完全真空后,停真空泵,打开通气阀,待炉内恢复常压后吊开炉盖交检工件。另外,由于离子氮化的过程是起辉电离放电的过程,所以一定要遵循基本的放电原理。当阴极放电长度小于小孔或窄缝尺寸的一半时,离子氮化才能够正常进行。而阴极放电长度主要受气压、气体组分、电压等参数的影响,.小也就能控制到1mm左右,所以理论上通过起辉进行氮化的小孔和窄缝的.小尺寸是2mm。广州小型离子氮化对比