另一方面,面对常规难题,我们解决问题的速度快,项目的开发周期不会受到过多影响。并且现在许多公司都会自己开发算法,这其中对于数据的训练必不可少,成都慧视还可以配套专属的AI算法训练工具SpeedDP,通过这个工具能够定制训练项目所用的算法,极大提升了开发的进度,满足了向客户短时间提供高性能特定场景图像...
而AI标注则好很多,通过AI算法开发的基本流程,就能够对AI进行深度训练,让其能够像人眼一样对图像上的目标进行判断分类,然后不同目标自动框选标注。这个工作主要是前期的模型训练需要大量时间,而后期的图像标注就很节省时间,通常情况下,一张图片,只需要7-8ms就能够精细标注完成,无论图片上的目标数量和复杂程度,这是人工远不能及的。目前,慧视SpeedDP经过多个版本的迭代,能够支持YOLO系列算法以及YOLOv8算法的分割标注,标注的精度进一步提升。目前我司能够提供完整的针对于人、车、船的标注模型,如果有其他目标标注的需求,则可以自行进行针对性训练。毫无疑问,AI标注的出现能够为企业大量的数据标注工作节省时间,从而节省成本。随着AI的进一步发展,未来传统标注的模式势必会被完全取代。成都慧视开发的Viztra-ME025图像处理板拥有3.0TOPS的算力。江西RK3399Pro处理板图像识别模块软件定制
“启明935A”系列芯片已经成功点亮,并完成各项功能性测试,达到车规级量产标准。启明935A是行业首颗基于Chiplet(芯粒/小芯片)异构集成范式的自动驾驶芯片,但并非单一芯片,而是一个家族系列。启明935HUBChiplet可以和不同数量的大熊星座AIChiplet互相搭配,再结合灵活的封装方式,快速形成不同性能等级的SoC芯片。它还支持高带宽的PBLink多芯互连,双芯双向带宽128GB/s,四芯双向带宽64GB/s。启明935A每颗芯片都支持比较大20路的1080p60摄像头输入,可应用于各类端侧AI部署。得益于大熊星座NPU天然支持Transformer结构,初步支持的模型有Yolo系列、ResNet50、PSPNet、PointNet++、TrafficSign_Retinanet、BevDet、miniCPM、Unet_ResNet50、PointPillars、PillarNest、M2track、BevFusion、PaliGemma、LLaMa-3B、8B等等。山西智慧工业图像识别模块解决方案也需要AI等算法的支持。

在无人机摄像头的基础上加装慧视光电开发的Viztra-LE026图像处理板,这是一块轻型化、低功耗的图像处理板,用在无人机上面既不会过多占用空间,也不会过多消耗续航,通过目标识别算法的赋能,就可以针对像东北虎这样的动物AI自动识别,一旦识别到老虎的特征物体,无人机就能够立即锁定并抵近观察,为消防和公安提供精确坐标。Viztra-LE026图像处理板采用的是瑞芯微RV1126芯片,能够输出2.0TOPS的算力。而在算法方面,成都慧视能够提供一站式AI算法训练平台SpeedDP,通过对大量动物的标注数据集的模型训练,能够实现对新数据集的快速AI自动标注,然后提升识别算法的性能。
传统的各类摄像头如监控、无人机吊舱等通常只具备记录声画的作用,要想更加智能化,例如具备目标识别检测的功能则需要对摄像头进行升级改造。这个过程植入图像处理技术是相对便捷的措施。图像处理是机器视觉技术的方法基础,包括图像增强、边缘提取、图像分割、形态学处理、图像投影、配准定位和图像特征提取等方法。实现这项技术可以采用AI图像处理板加AI算法。首先在图像处理板的选择上,根据摄像头的使用场景来选配合适性能的图像处理板。如果是工业环境、复杂环境,则应选择如RK3588系列的图像处理板,Viztra-HE030这款板卡就是采用瑞芯微RK3588芯片打造的工业级板卡,八核处理器能够实现比较高6.0TOPS的算力输出。成都慧视共开发有三款图像处理板。

通过在摄像头的基础上集成具备图像识别的AI图像处理板、AI算法以及大数据分析技术,就能够搭建一套简易但功能强大的AI质检系统。首先是针对于生产机器,利用无人机搭载带有质检系统的摄像头对机器各个部位进行“体检”,无人机的优势是机动灵活,省去了人工爬上爬下的冗杂时间,并且能够针对某个点位进行变倍放大,强于人眼的观察能力。其次是对于生产出的织布而言,AI质检系统能够高效精准地检测这些产品的瑕疵缺陷、色差等问题,系统的优势是能够实现全天候的巡查检测,对于24小时自动化生产作业的纺织厂来说,将是保障生产效率的一大利器。利用RK3588开发而成的Viztra-HE030图像处理板;湖北车载辅助图像识别模块人工智能
小型化图像识别模块RV1126。江西RK3399Pro处理板图像识别模块软件定制
多边形标注能够能够帮助我们标注一些规则复杂的物体,如动物、人、车、建筑物等,与矩形标注框等方法相比,多边形标注更能精确展示被标注物体的形状、大小以及实时形态,通过大量的多边形标注工作,能够更好的帮助我们提高算法模型的准确性和鲁棒性。传统的多边形标注方法中,标注者需要在物体的边缘上依次单击鼠标或使用绘图工具,将点连接起来形成一个封闭的多边形。标注的难度取决于被标注物体的复杂程度,相较于矩形框标注更加费时费力,如果遇到大量待标注目标,则极大地影响工作效率。江西RK3399Pro处理板图像识别模块软件定制
另一方面,面对常规难题,我们解决问题的速度快,项目的开发周期不会受到过多影响。并且现在许多公司都会自己开发算法,这其中对于数据的训练必不可少,成都慧视还可以配套专属的AI算法训练工具SpeedDP,通过这个工具能够定制训练项目所用的算法,极大提升了开发的进度,满足了向客户短时间提供高性能特定场景图像...
湖北目标跟踪功效
2026-02-14
无源图像处理板价格多少
2026-02-14
安徽图像识别AI智能安全帽识别
2026-02-14
网络目标跟踪报价行情
2026-02-14
甘肃应急救援AI智能高效处理
2026-02-14
光纤数据目标跟踪型号
2026-02-14
电力应急目标跟踪进货价
2026-02-14
陕西图像标注优势
2026-02-14
云南智慧视觉AI智能视觉
2026-02-14