6.4 2020年11月19日,我公司获邀南网广西电网公司总经办和生产技术部的邀请,委派公司技术智造中心总监王国明博士向广西电网公司的总经理、副总经理以及生产技术部、电力科学研究院等相关部门和直属单位的领导做了《变压器声纹振动在线监测与故障诊断技术》的专题汇报,荣获领导和**们的称赞与肯定。
6.5 2020年10月30日,国网公司设备部领导视察1000kV廊坊特高压变电站已投运的1000kV电抗器运行情况(如下图6.4所示)。通过查看我公司的GZOLM-1000T型变压器综合在线监测系统(局部放电、声纹振动、铁芯接地电流、油中溶解气体、电抗器空负载等运行参数)的多参量数据监测和融合评价技术所展示的电抗器在线运行中的性能状况),后根据评价电抗器在线运行健康态势的诊断报告,把某一台电抗器下线返厂维修,在厂区解体后验证了诊断报告的准确性。 杭州国洲电力科技有限公司振动声学指纹在线监测服务的定制化解决方案。声学指纹振动声学指纹在线监测监测系统内容

功能特性◆IED/主机具备多个点位开展实时连续性或周期性的监测GIS本体声纹振动信号,向平台层操控计算机传送监测数据开展智能分析,操控及监测数据分析软件实时展示分析结果和预警信息。◆具有比对分析功能:可将现测的与同规格被试品/历史的监测数据进行横向/纵向比对分析。◆具有断电不丢失存储数据、复电自动启动/复位功能,可连续实时监测、存储及导出1年以上数据。◆具备声纹振动信号时域波形展示、频谱分析(基频为100Hz)功能,可自动提取峰值频率、总谐波畸变率、频谱互相关系数、频率复杂度、振动平稳性、能量相似度、振动相关性等特征参量,以作为GIS运行状态分析参数,用户可设置报警阈值。◆智能分析:依托于我公司建立的海量典型故障案例的数据库,包络分析后可快速实现历史信号重合度比对开展智能分析,更直观、快速地判断电力设备运行状态。为量化信号重合度比对,GZAFV-01系统引入互相关系数的计算,当实时采集信号包络曲线与正常状态包络曲线的互相关系数:便携式声纹振动声学指纹在线监测监测原理图GZAF-1000T系列变压器(电抗器)振动声学指纹监测系统原理。

四、GZAFV-01系统的功能特点4.1基本功能4.1.1支持多通道信号同步实时地采集、显示及分析。4.1.2具有时间触发和电流触发功能,可手动选择信号触发方式。4.1.3可将任意两次测量的图谱进行相似度分析,并自动计算图谱的重合度。4.1.4具有先进的能量谱分析功能,并能自动识别能量谱比较大的高低频能量频率。4.1.5独有的信号处理功能,生成声纹振动信号ATF图谱(系我公司***软著权的《变压器有载分解开关及绕组振动测试软件V1.0》中的**核心算法),更直观、更便捷分析OLTC及绕组和铁芯的运行状态。
GIS在带电运行过程中除了机械故障会导致异常振动外,放电性故障(如绝缘子内部缺陷、螺丝松动、悬浮电位放电、毛刺前列放电、金属微粒放电等)也会导致声纹振动信号的产生。因此,通过深入研究GIS本体的声纹振动信号特征可发现GIS机械性故障及放电性故障,具有监测***、监测结果互相补充的特点。基于声纹振动信号的在线监测,可在GIS带电运行状态下及时发现潜在故障,并及时预警,从而延长使用寿命,提高电网运行的可靠性。我公司以声纹振动信号为主,结合电流、位移等其他参量的在线监测,开发了故障诊断算法(***软著权)并提取相关特征参量研制完成的GZAFV-01型声纹振动监测系统,适用于开关设备的带电监测(便携诊断式、手持巡检式)、在线监测(长期固定式、短期移动式)。GZAF-1000T系列变压器(电抗器)振动声学指纹监测频谱分析。

综上所述,采用声纹振动法监测变压器OLTC、绕组及铁芯的状态,适用于带电监测/在线监测,与变压器无电气连接而不影响正常运行,有安装方便、安全、可靠等优点。我公司结合多年技术预研储备及现场技术服务经验,成功研制出GZAFV-01型声纹监测系统,既有固定安装的长期在线监测式,也有便携式的带电监测系统及可移动的在线重症监护式。GZAFV-01系统由声纹振动传感器、驱动电机电流传感器、数据采集装置(在线监测式:IED,便携/手持式:主机;下文皆用IED/主机简称)、云服务器、通讯单元及供电单元构成;操控及监测数据分析软件结合包络分析、重合度分析、小波分析、能量分布矩阵、时域信号频谱分析等多种算法,并提取故障诊断特征参量,在线状态下实现变压器OLTC、绕组及铁芯的健康态势评价与故障类型诊断。GZAFV-01型声纹振动监测系统(开关设备)数据可视化和远程监控。在线声纹振动声学指纹在线监测监测规定
GZAF-1000S系列高压开关振动声学指纹监测系统--敞开式断路器监测功能特性。声学指纹振动声学指纹在线监测监测系统内容
确保采集到的振动和声学数据具有足够的准确性和分辨率,以便于识别设备的正常运行状态与异常情况,可以采取以下措施:
选择合适的传感器:根据被监测设备的特性和监测要求选择适当类型和规格的振动和声学传感器。传感器应具有高灵敏度和适当的频率响应范围。校准传感器:定期对传感器进行校准,以确保其输出与实际测量值之间的准确对应关系。优化采样频率:根据设备的动态特性和可能发生的故障类型,设置合适的采样频率,以捕捉到振动和声学信号的关键特征。减少噪声干扰:采取措施减少环境噪声和电磁干扰,如使用屏蔽电缆、设置隔振平台、选择低噪声环境进行测量等。数据预处理:采用滤波、去噪等数据预处理技术,提高信号质量,减少噪声的影响。多传感器融合:使用多个传感器并结合不同的测量位置,可以提高数据的冗余性和鲁棒性,从而增强信号的准确性。动态范围调整:根据设备的运行状态调整测量系统的动态范围,确保在设备运行在不同负载条件下都能获得清晰的信号。数据后处理和特征提取:应用高级信号处理技术,如时频分析、小波变换等,提取出反映设备状态的关键特征。 声学指纹振动声学指纹在线监测监测系统内容