世格赛思第4代智能超声刀系统采用自研发手柄,压电陶瓷,耐超高周疲劳及高声传导效率钛合金。其产品的性能不仅体现在手术期间,还极大地改善了患者的术后体验。使用世格赛思的超声刀头能够有力缩短手术时间,并加速患者的恢复周期,使得患者可以更快地康复并重返正常生活。这种效率和效果的提升在很大程度上得益于其先进的无菌包装和一次性使用设计。这些设计不仅避免了交叉使用风险的可能性,还确保了每次使用时设备的清洁和卫生。超声波器械可借助空化作用和声波的力量,将牙垢或肾结石等坚硬的结块轻轻敲碎。京津冀集采中标超声刀解决方案
骨头或牙齿之类的硬组织可以用钻头或牙钻来处理,比如在口腔手术时。这种情况下,超声波可辅助冲击或空化,协助机械工作。选定合适的工作频率后,可以更快、更针对性地处理组织,比如可以在保护好周边血管后进行。作用于肌肉等软组织时,靶向超声波能使得手术刀的刀片以非常高的频率,按特定的方式振荡。手术器械摩擦组织时会生成热量,靶向发热则有助于快速切割组织并凝血(见图1),从而防止大出血并促进止血。对手术器械的接触点施加高密度能量后,由于所需的机械力和压力较低,手术或活检时的切割也会更加容易。手术切口更小,对周围组织的创伤也更少,从而可减少术后疼痛,并缩短伤口的愈合时间,改善患者的愈后恢复。京津冀集采中标超声刀解决方案具有多种功能的超声刀,都已经逐渐变成了医生临床中不可或缺的一部分。
超声刀的智能算法智能温度检测算法:此算法通过分析刀头激发过程中的各种数据变化,利用AI技术进行分类、识别和训练,以实现温度的精细监测。当温度超过限值时,会发出预警并引导医生采取措施,减少因刀头过热导致的组织热损伤。金属器械碰撞检测算法:该算法通过分析刀头操作过程中的多种数据变化,利用AI算法进行数据识别、分类和训练,快速检测出刀头与其他器械的碰撞信号特征。当发生碰撞时,能量迅速回收,直到碰撞结束,并在屏幕上提示该事件,从而提高超声刀的使用安全性,降低刀头断裂风险。组织切断检测算法:通过分析刀头操作过程中的多种数据变化,利用AI算法进行数据识别、分类和训练。当组织被切断时,算法通过声音提示操作人员,同时降低能量输出,减少钳口摩擦损耗和刀头温度,提高切割精度。
超声手术刀的原理是机械共振。共振是指当外部激励频率等于物体的固有频率时发生的常见振动现象。共振在建筑或固体力学中会带来巨大的风险。在结构设计中,需要尽量避免共振。而超声波手术刀的操作主要依靠共振,使其实施相对容易。然而,实现良好的性能是非常具有挑战性的。如左图所示,它展示了一个经典的物理现象,即一群马过桥时,由于脚步节奏的共振而导致桥的倒塌。右边是美国塔科马海峡大桥,在其完工40天后,因共振导致了坍塌。对于超声波手术刀,我们需要它长时间处于共振状态,这便对钛合金材料的疲劳性能提出了非常严格的要求。医用超声刀主要包括超声波发生器、超声波换能器、超声波波导杆和刀头以及手持式动作执行机构组成。
超声刀头是一种常用于外科手术的医疗器械,根据其结构和功能,可以分为多种类型,包括剪式刀头和握式刀头等。以下是这些类型的详细介绍:剪式刀头特点:剪式刀头通常由两个刀片组成,通过高频振动产生切割效果。刀片之间的间隙可以调节,以适应不同的切割需求。适用于精确的切割和切除操作。应用场景:剪式刀头常用于组织切割、血管切除、组织修复等手术。在微创手术中,剪式刀头能够减少切口的损伤,提高手术的精确性和安全性。手术:组织切割:用于切割组织,如肌肉、脂肪等。血管切除:用于切除血管,减少出血。组织修复:用于修复组织缺损,如皮肤修复。超声刀有助于快速恢复和愈合。妇科超声刀使用流程
超声刀的脚踏开关、刀头上的手动控制装置用以控制主机输出能量。京津冀集采中标超声刀解决方案
基于神经网络控制算法的技术优势Neu-Track智能追踪系统:利用自学习模型算法,智能追踪谐振频率,使主机软件系统能够适配任何换能器,并在驱动带宽内无需校正即可直接使用,提高了系统的鲁棒性和稳定性。Neu-Seal自适应组织切割算法:采用神经网络谐波控制算法,自适应调整,闭合血管直径更大,能够智能识别不同组织,使不同组织的切割及凝血时间更接近。通过自学习算法模型,系统在工作过程中变得更加稳定可靠。Neu-Cut智能切割控制算法:利用AI软件算法,智能感知组织切割进度,在切割即将完成时自动降低驱动功率,并发出切割不同阶段的警示声,保护钳头并延长其垫片寿命,提升超声刀钛合金刀芯的耐用性。这些先进的算法技术,使得设备在手术过程中表现得更加智能和高效,提升了手术的安全性和精细度。京津冀集采中标超声刀解决方案