按作用原理和结构分类:单端面机械密封:由一对密封端面组成,适用于一般液体场合。双端面机械密封:由两对密封端面组成,适用于高温、高压、腐蚀性介质等场合。多端面机械密封:由多对密封端面组成,适用于极端工况。机械密封是旋转轴用动密封,也被称为端面机械密封,离心泵用机械密封通常是由静环、动环、弹簧座、弹簧、静环密封圈、动环密封圈等组成。机械密封的形式有平衡型与非平衡型、内装密封与外装密封、旋转密封与静止密封、 弹簧密封与波纹管密封。机械密封的冷却液应定期检测其化学成分。深圳真空泵用机械密封定制
由于介质引起的渗漏:(1)大多数潜污泵机械密封拆解后,静环和动环的辅助密封件无弹性,有的已经腐烂,造成了机封的大量渗漏甚至有磨轴的现象。由于高温、污水中的弱酸、弱碱对静环和动环辅助橡胶密封件的腐蚀作用,造成了机械渗漏过大,动、静环橡胶密封圈材料为丁腈—40 ,不耐高温,不耐酸碱,当污水为酸性碱性时易腐蚀。对策:对腐蚀性介质,橡胶件应选用耐高温、耐弱酸、弱碱的氟橡胶。(2)固体颗粒杂质引起的机械密封渗漏如果固体颗粒进入密封端面,将会划伤或加快密封端面的磨损,水垢和油污在轴(套)表面的堆积速度超过摩擦副的磨损速度,致使动环不能补偿磨耗位移,硬对硬摩擦副的运转寿命要比硬对石墨摩擦副的长,因为固体颗粒会嵌入石墨密封环的密封面内。对策:在固体颗粒容易进入的位置应选用碳化钨对碳化钨摩擦副的机械密封。湖南循环泵用机械密封机械密封的材质选择应与介质的化学性质相兼容。
机械密封的主要原理在于将易泄漏的轴向密封转化为更为可靠的端面密封形式。当电机轴处于工作状态时,会驱动弹簧座、弹簧压板、动环等一系列组件同步旋转。由于弹簧的弹性作用,动环会被紧紧贴合在静环上。在电机轴的旋转过程中,动环随轴一同转动,而静环则保持静止状态,固定在座架上。这种动环与静环之间的紧密接触,形成了一道环形密封面,有效阻止了介质的泄漏。机械密封是泵类产品不可或缺的关键组件,对泵的正常运行至关重要。一旦机械密封失效,电机便有可能接触到液体,进而引发电机损坏的风险。
内装式与外装式机械密封,内装式是弹簧置于被密封介质之内,如图3(a)所示;外装式则是弹簧置于被密封介质的外部,如图3(b)所示。内装式可使泵轴长度减小,但弹簧直接与介质接触;外装式正好相反。在常用的外装式结构中,动环与静环接触端面上所受介质作用力与弹簧力的方向相反,当介质压力有波动或升高时,若弹簧力余量不大,就会出现密封不稳定;而当介质压力降低时,又因弹簧力不变,使端面上受力过大。特别是在低压启动时,由于摩擦副尚未形成液膜,端面上受力过大容易磨伤密封面。所以外装式多用于介质易结晶、有腐蚀性、较黏稠和压力较低的场合。内装式的端面比压随介质压力的升高而升高,密封可靠,应用普遍。泵用机械密封的维护包括清洁、检查和必要的部件更换。
一般来说,轴套外伸的轴间、密封端盖与齿轮泵体间的泄漏比较容易发现和解决,但需细致观察,特别是当工作介质为液化气体或高压、有毒有害气体时,相对困难些。其余的泄漏直观上很难辩别和判断,须在长期管理、维修实践的基础上,对泄漏症状进行观察、分析、研判,才能得出正确结论。齿轮泵泄漏原因分析及判断:1.安装静试时泄漏。机械密封安装调试好后,一般要进行静试,观察泄漏量。如泄漏量较小,多为动环或静环密封圈存在问题;泄漏量较大时,则表明动、静环摩擦副间存在问题。在初步观察泄漏量、判断泄漏部位的基础上,再手动盘车观察,若泄漏量无明显变化则静、动环密封圈有问题;如盘车时泄漏量有明显变化则可断定是动、静环摩擦副存在问题;如泄漏介质沿轴向喷射,则动环密封圈存在问题居多,泄漏介质向四周喷射或从水冷却孔中漏出,则多为静环密封圈失效。此外,泄漏通道也可同时存在,但一般有主次区别,只要观察细致,熟悉结构,一定能正确判断。2.试运转时出现的泄漏。齿轮泵用机械密封经过静试后,运转时高速旋转产生的离心力,会抑制介质的泄漏。因此,试运转时机械密封泄漏在排除轴间及端盖密封失效后,基本上都是由于动、静环摩擦副受破坏所致。机械密封的密封面材料选择应考虑硬度和耐磨性。湖北潜水泵用机械密封定制
泵用机械密封的平衡孔设计有助于减少热量积聚。深圳真空泵用机械密封定制
机械密封的结构型式很多,主要是根据摩擦副的对数、弹簧、介质和端面上作用的比压情况以及介质的泄漏方向等因素来划分。1.旋转式和静止式机械密封,旋转式是弹簧随轴一起转动的机械密封,大多数泵都用此种型式密封。但在高转速时,因弹簧受较大的离心力,若对动平衡性要求很高,则可采用弹簧不转动的静止式机械密封。2.内向流与外向流机械密封,介质沿密封端面由外向内泄漏者称为内向流式,而由内向外泄漏者称为外向流式。内向流式泄漏方向与离心力方向相反,离心力可阻止液体泄漏,故内向流式较外向流式泄漏少,对含固体的液体,采用内向流式更适合。深圳真空泵用机械密封定制
压缩机工作时,动环随转子一起转动,气体被引入动压槽,引入沟槽内的气体在被压缩的同时,遇到密封堰的阻拦,压力进一步升高。这一压力克服静环后面的弹簧力和作用在静环上的流体静压力,把静环推开,使动环和静环之间的接触面分开而形成一层稳定的动压气膜,此气膜对动环和静环的密封面提供充分的润滑和冷却。气膜厚度一般为几微米,这个稳定的气膜使密封端面间保持一定的密封间隙。气体介质通过密封间隙时靠节流和阻塞的作用而被减压,从而实现气体介质的密封,几微米的密封间隙会使气体的泄漏率保持较小。在压缩机应用领域,干气密封正逐渐替代浮环密封、迷宫密封和机械密封。在泵和反应釜上干气密封的应用也越来越普遍。双端面机械密封在高可...