无人机要进行AI识别,需要的是模拟人眼,对需要识别的物体进行图像处理,AI通过大量的模型训练,能够具备对物体进行特征提取进行分析的能力,从而实现整个流程的自动化,达到无人机智能识别的目的。但不同的事,无人机的目标识别和传统的摄像头还是又不晓得区别,传统的摄像头是静态的,而无人机搭载如光电吊舱飞在空中...
成都慧视开发的Viztra-HE030图像处理板就是一款采用了瑞芯微旗舰级芯片RK3588的高性能板卡,具备八核处理器,至高能够输出6.0TOPS的算力。通过对接口的定制开发,就能够应用到城市的各个领域。有了高性能的Viztra-HE030图像处理板这样的硬件支持,还需要针对于不同的应用场景定制专属的识别算法。例如在城市安防巡逻中,执法人员采用无人机进行高空执法,就需要无人机能够进行实时识别、动态跟踪,并且根据特殊需求执行特殊任务。这都需要高精尖的算法支持。如何提升小型飞行器识别跟踪的精度?甘肃慧视光电AI智能应用
巡检机器人能够实现抵近待测设备,进行精细的测温、测量以及感应。同时具备自主导航、实时避障功能,能够智能规划比较好巡检路径、规避站内检修区域,效率是人工的好几倍,并且还不会出现传统人工巡检造成人身危害等行为。这种机器人搭载的图像处理板可以自由选择,例如成都慧视开发的Viztra-HE030图像处理板,就可以很好的应用在电力巡检领域,这块板卡采用了瑞芯微全新一代旗舰芯片RK3588,采用8nmLP制程,四大四小八核处理器;搭载八核64位CPU,主频高达2.4GHz;集成ARMMali-G610MP4四核GPU,内置AI加速器NPU,算力高达6.0TOPS。用在电力巡检领域完全可以满足需求,并且成都慧视可以根据使用场景进行外壳的特殊化定制,有效处理散热防水,为机器人的户外工作提供更加稳定的处理能力。河南边海防AI智能算法成都慧视推出的SpeedDP很贵吗?
一些化工园区、石油炼厂等需要在极其安全的环境中作业,因此对于园区的巡检工作十分关键。在长时间的工作中,园区的生产设备会出现被腐蚀、老化、磨损,给生产带来了风险,一旦检查疏忽,后果不堪设想。无人机搭载红外光电吊舱能够远距离检查设备,避免直接接触,实现对关键点的变倍放大观察,发现已存在或者潜在的泄漏、损坏,有效减少安全事故。另外无人机体积小巧、重量轻盈,能够在复杂环境中灵活穿梭。通过远程操控,无人机可以避免人工巡检过程中可能遇到的风险,确保人员安全。成都慧视开发的VIZ-100T三轴三光微型吊舱,具备10倍变焦能力的可见光相机,在白天进行巡检时,能够远距离对设备进行观察分析,同时集成了640*512的高分辨率红外相机,能够实现清晰的红外成像,在夜间进行安全巡检,搭载于小型无人机上,能够对出现问题的目标点位进行定位,实时视频数据回传,为园区巡检提供安全保障。
慧视光电开发的Viztra-HE030图像处理板采用了工业级芯片RK3588,内部植入公司自主研发的智能图像算法,架构更先进,核心数8核(4大4小),算力6.0TOPS,支持丰富的输出接口,同时支持H264、H265两类视频编码。可实时对目标进行识别或者人为的的锁定,同时可以根据输出目标的靶量信息,对目标进行实时跟踪。这是达成目的的硬件条件。在算法领域,则需要一些特殊的算法。无人机执行任务时飞在高空,地面的物体就会显得较小,小目标通常指图像中像素面积小于32*32的物体,一般的AI算法难以实现精细锁定跟踪。成都慧视能够帮助训练算法吗?
IDEA研究院团队推出了GroundingDINO 1.5,它能够实现端侧实时识别。在图像和文本的语义理解上表现出色,能够快速、准确地根据语言提示检测和识别图像中的目标对象。作为当前性能比较好的开集检测模型,GroundingDINO 1.5Pro可以帮助构建海量的具有物体级别语义信息的多模态数据,从而有效地助力多模态大模型的训练。它可以将长文本描述中的短语与图像中的具体对象或场景精确匹配,以增强AI对视觉内容和文本之间关系的理解。目前,成都慧视利用AI图像处理板和YOLO算法来实现对物体的实时监测,其中,开发的Viztra-HE030图像处理板采用了瑞芯微全新一代高性能芯片RK3588,拥有四大四小八核处理器,算力水平能够达到6.0TOPS,在我司定制多种视频接口后,可实时对目标进行识别或者人为的的锁定,同时可以根据输出目标的靶量信息,对目标进行实时跟踪。定制算法也能够进行训练吗?河南边海防AI智能算法
利用成都慧视推出的SpeedDP能够帮助训练AI跟踪算法。甘肃慧视光电AI智能应用
YOLO系列算法是目标识别领域很重要的技术之一,因为性能强大、消耗算力较少,一直以来都是实时目标检测领域的主要范式。该框架被***用于各种实际应用,包括自动驾驶、监控和物流等行业的目标识别。自今年2月YOLOv9发布以后,近期,清华又推出了YOLOv10,作为计算机视觉领域的突破性框架,具备实时的端到端目标检测能力,通过提供结合效率和准确性的强大解决方案,延续了YOLO系列的传统。据悉,YOLOv10在各种模型规模上都实现了SOTA性能和效率。例如,YOLOv10-S在COCO上的类似AP下比RT-DETR-R18快1.8倍,同时参数数量和FLOP大幅减少。与YOLOv9-C相比,在性能相同的情况下,YOLOv10-B的延迟减少了46%,参数减少了25%。甘肃慧视光电AI智能应用
无人机要进行AI识别,需要的是模拟人眼,对需要识别的物体进行图像处理,AI通过大量的模型训练,能够具备对物体进行特征提取进行分析的能力,从而实现整个流程的自动化,达到无人机智能识别的目的。但不同的事,无人机的目标识别和传统的摄像头还是又不晓得区别,传统的摄像头是静态的,而无人机搭载如光电吊舱飞在空中...
安防AI智能视觉
2025-01-01贵州数据目标识别郑重承诺
2025-01-01江苏安全目标识别24小时服务
2025-01-01甘肃图像识别模块高性能主板
2025-01-01湖南安全目标识别型号
2025-01-01广东国产目标识别编号
2025-01-01云南深度学习AI智能分析软件
2025-01-01重庆目标跟踪图像识别模块专业
2025-01-01内蒙古无源目标识别远程协助
2025-01-01