方案由噪声测试仪器,配合高精度传声器以及高性能隔音箱体组成。精实测控通过多年异音领域研究深耕,大量数据积累,自主开发出一套完整的异音识别系统,通过不同模型对应,能快速高效应对不同异音测试需求。现有电机产线都是通过在噪音房人工听音的方式,来达到对异音电机产品的判定筛选目的。这种方式效率低下,主观性太强,带来各种市场投诉。电机异音测试完美解决以上生产痛点,提升效率的同时从根本上减少客诉,提升用户体验。时域、频域异音智能化检测系统可测量测试产品的A/C/Z计权声压级,也可直接测量声功率,以及时域频域等。无锡设备异响检测技术

随着机电自动化技术的进步,家电生产线中许多需要体力劳动的工位逐渐被机械手所代替,但仍有很多非体力工位还离不开人,比如视检和听检工位,不需要人的体力或操作,而要靠人的眼睛和耳朵来判断产品的某项指标是否品质合格,这样的工位就需要人工智能才能很好完成替代。在线异音异响检测可以说是人工智能技术在家电生产过程中的一个合适应用场景,但要想与家电生产流程真正无缝结合,真正替代人工声检,还需要解决很多技术和管理上的难题,技术难题包括产线节拍匹配、信号采集、环境噪声消除、训练样本选择、合适学习模型确定等,管理难题包括检测规范与标准的制定以及检测流程的重构等,解决这些难题的方法和思路将在后续详细深入讨论。无锡状态异响检测系统供应商电机异响异音系统软件不仅具有简洁明晰的测试结果显示,同时也具有专业的分析结果显示。

人工智能和机器学习方法在噪声与异响识别判定中得到了广泛应用。通过训练深度学习模型,例如卷积神经网络(CNN)和循环神经网络(RNN),可以实现对噪声和异响的自动识别和分类。这些方法可以处理大量数据,具有较高的准确性和鲁棒性。提供在批量生产过程中进行噪音、异响、异音声学质量分析和振动测试一站式解决方案,可以实现各种机械组件的快速、可靠和彻底的噪声、振动测试。从生产线终端显示:通过/失败,以及相关测试指标情况,并将所有测试内容记录,提供可溯源的数据,以发现不必要噪声、振动根本原因,并对其进行消除或减轻。显著提高生产线产量和成本效益。
家电异音异响检测系统的架构,系统由硬件和软件两部分共同组成了一个不可分割的整体,硬件部分包括测量环境、传感器、采集系统和判别系统,测量环境可以是基本不做改动的原始生产线,也可以是在生产线上设计添加的简易隔声或吸声空间,测量环境的考虑重点是如何减少生产线环境噪声的影响。传感器和采集系统一般要求满足可听声频带的采样要求,对系统的量化精度要求至少采用16位采集系统,能达到24位更好。判别系统一般是采集系统和计算机的结合体,计算机上运行的软件是信号特征提取算法和机器学习模型。软件部分中的信号测量分析模块主要完成信号的采集和保存,应用信号处理技术,特征提取模块抽取声信号样本特征,构建特征向量和机器学习数据集。机器学习模块实现各种机器学习算法,在特征向量数据集的基础上,完成训练、验证和测试等环节,**终获得异音判别参数,过程中还包括特征向量和机器学习模型参数的选择与优化。异音异响自动化检测系统用于生产线终检阶段,对特定特征的噪声、振动信号超出阈值等问题的产品进行筛选。

代替人耳检测异响的技术虽然带来了诸多便利和效率提升,但仍然存在一些缺点。以下是对这些缺点的分点表示和归纳:技术成本较高:引入先进的异响检测系统,声学成像仪、声学相机等设备,需要较高的投资成本,对于小型企业或预算有限的情况可能不太适用。**设备的维护和升级也需要额外成本。对环境要求较高:这些设备可能在特定的工业环境下工作效果比较好,但在其他复杂或恶劣的环境下可能受到限制。环境中的其他噪声和干扰可能会影响设备的检测精度。盈蓓德科技开发德异音检测模块根据每个音源信号检测散热风扇是否存在异音。无锡旋转机械异响检测技术
异音异响识别设定特征阈值,精细识别异音异响,摆脱传统依赖人耳判断异响异音的方法。无锡设备异响检测技术
即使电机处于稳定运转的状态下,电机的瞬间转速仍然会出现一定程度的波动。当这种波动现象的频率比较低时,常常给人带来很差的主观感受。因此,在试验中需要测检测电机转速。当被测电机较小或其他原因不方便直接测试转速时,也可采用振动噪声信号提取出转速。PULSELabshop和BKConnect均具有转速自动提取功能,其中PULSELabshop支持在线实时转速提取。以下图左侧图形为例,由于电机转速的波动,导致电机振动的频率出现明显的周期变化,这种频率的周期变化与转速的周期变化存在线性等比关系,所以可以利用这些振动频谱,提取转速数据。下图右侧图形的结果,即为左侧数据提取出来的转速数据。无锡设备异响检测技术