从振动和声学数据中提取有用的特征,以便建立设备的声学指纹,通常会用到以下信号处理技术:傅里叶变换(FFT):用于分析信号在频域中的特性,可以识别出设备运行时的固有频率和谐波成分。短时傅里叶变换(STFT):与FFT相比,STFT能够展示信号随时间变化的频率特性,适用于非平稳信号的分析。小波变换:具有良好的时频局部化特性,能够在多尺度上分析信号,适合捕捉瞬态事件和局部特征。包络检测:用于提取振动信号的振幅包络,可以用来表示信号的动态特性。频谱分析:通过计算信号的功率谱密度(PSD)或幅值谱,可以识别出信号的频率成分和能量分布。时频分析方法:如Wigner-Ville分布、Choi-Williams分布等,这些方法能够提供信号的时频表示,有助于分析复杂非线性和非平稳信号。模态分析:通过识别设备振动的模态特性,可以提取出与设备结构和损伤相关的特征。熵分析:如时域熵、频域熵或小波熵,这些方法可以量化信号的不确定性和复杂性,有助于识别设备状态的变化。统计分析:包括均值、方差、标准差等统计参数,可以描述信号的波动性和稳定性。高阶统计量:如偏度和峰度,它们可以提供信号分布形状的信息,有助于识别异常模式。GZAF-1000T系列变压器(电抗器)振动声学指纹监测系统概述。检测振动声学指纹在线监测利润

技术交流与投运业绩:GZAF-1000T系列变压器/电抗器振动声学指纹监测系统已成功应用于智能变电站、智慧变电站及数字化变电站等示范项目(已经投运的廊坊特高压站、济南商西站、青岛顾家站和胜利站、泰安天平站),实现大型变压器/电抗器全振动在线监测与故障诊断,有效地提高设备运行可靠性。同时,我公司积极与各科研院所(南网电科院、广西电科院、冀北电科院、山东电科院、江苏电科院、浙江电科院)、供电公司(冀北、山东、山西、江苏、宁夏等地的省检)、变压器制造商(山东电力设备制造厂、江苏华鹏变压器厂、南通的韩国晓星变压器厂、杭州钱江变压器厂等)、有载分接开关制造商(上海华明的遵义长征厂区、德国MR等)、变电站综合监测系统平台承建商(国网智能、南瑞科技、电力设备监测及诊断技术的“中国智造者”第23页共29页长园深瑞等)开展合作,不断丰富各型号变压器/电抗器的振动声学指纹样本数据库。GZAF-1000T监测系统包括便携型带电检测(分体机的如下图24C、一体机的如下图24D)、固定型在线监测(标准1U式的如下图24E、壁挂式监测单元的如下图24F)等机型。其中,便携式一体机结构轻巧,适用于高压开关的带电检测及定期检修。检测振动声学指纹在线监测利润杭州国洲电力科技有限公司振动声学指纹在线监测服务。

系统功能:3.4.2监测系统的智慧化功能具备边缘计算能力,就地采集并处理振动声学指纹信号及驱动电机电流信号,完成有载分接开关信号包络、ATF等分析,完成绕组及铁芯振动信号频谱分析及参数计算,根据传输层要求统一通讯接口及数据结构,根据平台层及应用层要求上传分析结果;具备实物ID管理功能,提供有载分接开关、绕组及铁芯运行状态信息链接入口,可扫码读取设备在线监测历史数据及趋势。通过扫码或RFID识别设备,读取设备ID信息,通过站内网络(4G/5G/WIFI)传输给云端服务器,向服务器请求该设备的详细信息,以及详细的运行状态,测试信息等。根据各时频信号互相关系数、能量分布曲线特征参量(互相关系数、最大值、平均值、峰度、偏度)、ATF图谱特征参量(六等分区间均值)、总谐波畸变率、基频信号能量比等状态量,采用深度学习算法,自动判断变压器/电抗器运行状态及机械故障类型。图15基于振动声学指纹的变压器故障诊断结合变压器/电抗器的带电检测、智能巡检以及其他在线监测状态量,
数据采集装置安装在密封箱体内,在线监测型挂壁式主机使用强力磁铁吸附在变压器/电抗器的外壁(如下图5B所示),同时采集箱外侧涂抹胶水粘合。系统各种传感器、通信模块和前端主控单元统一采用220V供电方式。采集箱外部设有5个防水接口,分别为振动传感器接入孔防水接口、电流信号防水接口、电源线缆防水接口、USB信号防水接口、采集箱进出线孔,安装防水接头、机械振动信号、电流信号引入线缆孔安装双防12-PG13.5接头、通信引入线缆采用PG16型防水接头,并内外两边涂胶处理,进入双防接头之前的线缆均套金属保护管,采集箱内部接线端子做密封保护,确保采集箱内部整体密封。GZAF-1000T系列变压器(电抗器)振动声学指纹监测云平台服务器。

GIS及敞开式的隔离开关监测功能特性◆采用加速度传感器及电流传感器监测隔离开关声纹振动及电机电流信号。◆具有比对分析功能:可将现测与标准/历史的监测数据进行横向/纵向比对分析。◆具有诊断分析功能:可对隔离开关状态进行诊断,并上传原始数据及分析结果。◆具有断电不丢失存储数据、复电自启动、自复位的功能,可连续监测、存储及导出功能,可够存储1000次以上的操作数据,并具备批量处理数据功能。◆具备声纹振动及电机电流信号波形、包络分析、时频图谱等展示功能。◆自动提取动/静触头的分/合闸动作时间、电机峰值电流、电机电流的燃弧时间及抖动高幅值关键特征、声纹振动脉动关键特征等参量。◆智能分析:依托于我公司建立的海量典型故障案例的数据库,包络分析后可快速实现历史信号重合度比对开展智能分析,更直观、快速地判断电力设备运行状态。为量化信号重合度比对,GZAFV-01系统引入互相关系数的计算,当实时采集信号包络曲线与正常状态包络曲线的互相关系数:接近1时,被测设备是接近正常状态。接近0时,被测设备是可能存在故障的异常状态。杭州国洲电力科技有限公司振动声学指纹在线监测技术说明。声学指纹振动声学指纹在线监测监测系统内容
GZAF-1000T系列变压器(电抗器)振动声学指纹监测时频能量分布矩阵(ATF图谱)。检测振动声学指纹在线监测利润
各类高压开关监测系统的技术参数类别指标名称技术指标备注振动声学指纹传感器励磁电压DC18~30V频率范围为0.5Hz~3kHz的传感器适用于GIS本体振动声学指纹监测;频率范围为0.5Hz~20kHz的传感器适用于隔离开关及断路器机械特性监测。励磁电流2~20mA灵敏度100mV/g测量范围50g频率范围0.5Hz~3kHz/20kHz数量1个电流传感器电流范围0~20A适用于隔离开关及断路器机械特性监测。频率范围10Hz~100kHz线性度<1%误差<1%噪声比优于80dB数量6个位移传感器测量范围0~300mm适用于断路器机械特性监测。时间分辨率优于0.1ms行程分辨率优于0.1mm数量1个IED(监测单元)采样率200kS/s采样精度16bit通道数量8(可根据监测需求定制)通讯接口RS485、RJ45、光纤、4G/5G检测振动声学指纹在线监测利润