企业商机
数字信号测试基本参数
  • 品牌
  • 克劳德
  • 型号
  • 数字信号测试
数字信号测试企业商机

对于真实的数据信号来说,其频谱会更加复杂一些。比如伪随机序列(PRBS)码流的频谱的包络类似一个sinc函数。图1.4是用同一个发送芯片分别产生的800Mbps和2.5Gbps的PRBS信号的频谱,可以看到虽然输出数据速率不一样,但是信号的主要频谱能量集中在4GHz以内,也并不见得2.5Gbps信号的高频能量就比800Mbps的高很多。

频谱仪是对信号能量的频率分布进行分析的准确的工具,数字工程师可以借助频谱分析仪对被测数字信号的频谱分布进行分析。当没有频谱仪可用时,我们通常根据数字信号的上升时间估算被测信号的频谱能量:

信号的比较高频率成分=0.5/信号上升时间(10%~90%)

或者当使用20%~80%的上升时间标准时,计算公式如下:

信号的比较高频率成分=0.4/信号上升时间(20%~80%) 数字信号幅度测试的定义;西藏USB测试数字信号测试

西藏USB测试数字信号测试,数字信号测试

数字信号的上升时间(Rising Time)

任何一个真实的数字信号在由一个逻辑电平状态跳转到另一个逻辑电平状态时,其中间的过渡时间都不会是无限短的。信号电平跳变的过渡时间越短,说明信号边沿越陡。我们通常使用上升时间(RisingTime)这个参数来衡量信号边沿的陡缓程度,通常上升时间是指数字信号由幅度的10%增加到幅度的90%所花的时间(也有些场合会使用20%~80%的上升时间或其他标准)。上升时间越短,说明信号越陡峭。大部分数字信号的下降时间(信号从幅度的90%下降到幅度的10%所花的时间)和上升时间差不多(也有例外)。图1.2比较了两种不同上升时间的数字信号。上升时间可以客观反映信号边沿的陡缓程度,而且由于计算和测量简单,所以得到的应用。对有些非常高速的串行数字信号,如PCIe、USB3.0、100G以太网等信号,由于信号速率很高,传输线对信号的损耗很大,信号波形中很难找到稳定的幅度10%和90%的位置,所以有时也会用幅度20%~80%的上升时间来衡量信号的陡缓程度。通常速率越高的信号其上升时间也会更陡一些(但不一定速率低的信号上升时间一定就缓),上升时间是数字信号分析中的一个非常重要的概念,后面我们会反复提及和用到这个概念。 电气性能测试数字信号测试联系人模拟信号和数字信号的相互转换;

西藏USB测试数字信号测试,数字信号测试

什么是数字信号(DigitalSignal)

典型的数字设备是由很多电路组成来实现一定的功能的,系统中的各个部分主要通过数字信号的传输来进行信息和数据的交互。

数字信号通过其0、1的逻辑状态的变化来一定的含义,典型的数字信号用两个不同的信号电平来分别逻辑0和逻辑1的状态(有些更复杂的数字电路会采用多个信号电平实现更多信息的传输)。真实的世界中并不存在理想的逻辑0、1状态,所以真实情况下只是用一定的信号电平的电压范围来相应的逻辑状态。比如图1.1中,当信号的电压低于判决阈值(中间的虚线部分)的下限时逻辑0状态,当信号的电压高于判决阈值的上限时逻辑1状态。

采用串行总线以后,就单根线来说,由于上面要传输原来多根线传输的数据,所以其工作速率一般要比相应的并行总线高很多。比如以前计算机上的扩展槽上使用的PCI总线采用并行32位的数据线,每根数据线上的数据传输速率是33Mbps,演变到PCle(PCI-express)的串行版本后每根线上的数据速率至少是2.5Gbps(PCIel.0代标准),现在PCIe的数据速率已经达到了16Gbps(PCIe4.0代标准)或32Gbps(PCIe5.0代标准)。采用串行总线的另一个好处是在提高数据传输速率的同时节省了布线空间,芯片的功耗也降低了,所以在现代的电子设备中,当需要进行高速数据传输时,使用串行总线的越来越多。

数据速率提高以后,对于阻抗匹配、线路损耗和抖动的要求就更高,稍不注意就很容易产生信号质量的问题。图1.10是一个典型的1Gbps的信号从发送端经过芯片封装、PCB、连接器、背板传输到接收端的信号路径,可以看到在发送端的接近理想的0、1跳变的数字信号到达接收端后由于高频损耗、反射等的影响,信号波形已经变得非常恶劣,所以串行总线的设计对于数字电路工程师来说是一个很大的挑战。 什么是数字信号(DigitalSignal);

西藏USB测试数字信号测试,数字信号测试

采用并行总线的另外一个问题在于总线的吞吐量很难持续提升。对于并行总线来说, 其总线吞吐量=数据线位数×数据速率。我们可以通过提升数据线的位数来提高总线吞吐  量,也可以通过提升数据速率来提高总线吞吐量。以个人计算机中曾经非常流行的PCI总  线为例,其**早推出时总线是32位的数据线,工作时钟频率是33MHz,其总线吞吐量=  32bit×33MHz;后来为了提升其总线吞吐量推出的PCI-X总线,把总线宽度扩展到64位, 工作时钟频率比较高提升到133MHz,其总线吞吐量=64bit×133MHz。是PCI插槽  和PCI-X插槽的一个对比,可以看到PCI-X由于使用了更多的数据线,其插槽更长。

但是随着人们对于总线吞吐量要求的不断提高,这种提升总线带宽的方式遇到了瓶颈。首先由于芯片尺寸和布线空间的限制,64位数据宽度已经几乎是极限了。另外,这64根数据线共用一个采样时钟,为了保证所有的信号都满足其建立保持时间的要求,在PCB上布线、换层、拐弯时需要保证精确等长。而总线工作速率越高,对于各条线的等长要求就越高,对于这么多根信号要实现等长的布线是很难做到的。

用逻辑分析仪采集到的一个实际的8位总线的工作时序,可以看到在数据从0x00跳变到0xFF状态过程中,这8根线实际并不是精确一起跳变的。 数字此案好的上升时间(Rising Time);西藏USB测试数字信号测试

数字信号的预加重(Pre-emphasis);西藏USB测试数字信号测试

数字信号的带宽(Bandwidth)

在进行数字信号的分析和测试时,了解我们要分析的数字信号的带宽是很重要的一点,它决定了我们进行电路设计时对PCB走线和传输介质传输带宽的要求,也决定了测试对仪表的要求。

数字信号的带宽可以大概理解为数字信号的能量在频域的一个分布范围,由于数字信号不是正弦波,有很多高次谐波成分,所以其在频域的能量分布是一个比较复杂的问题。

传统上做数字电路设计的工程师习惯根据信号的5次谐波来估算带宽,比如如果信号的数据速率是100Mbps,其快的0101的跳变波形相当于50MHz的方波时钟,这个方波时钟的5次谐波成分是250MHz,因此信号的带宽大概就在250MHz以内。这种方法看起来很合理,因为5次谐波对于重建信号的基本波形形状是非常重要的,但这种方法对于需要进行精确波形参数测量的场合来说就不太准确了。比如同样是50MHz 的信号,如果上升沿很陡接近理想方波,其高次谐波能量就比较大;而如果上升沿很缓接近 正弦波,其高次谐波能量就很小。
西藏USB测试数字信号测试

与数字信号测试相关的文章
江西数字信号测试价格优惠 2025-02-14

建立时间和保持时间加起来的时间称为建立/保持时间窗口,是接收端对于信号保持在 同一个逻辑状态的**小的时间要求。数字信号的比特宽度如果窄于这个时间窗口就肯定无 法同时满足建立时间和保持时间的要求,所以接收端对于建立/保持时间窗口大小的要求实 际上决定了这个电路能够工作的比较高的数据速率。通常工 作速率高一些的芯片,很短的建 立时间、保持时间就可以保证电路可靠工作,而工作速率低一 些的芯片则会要求比较长的建 立时间和保持时间。 另外要注意的是, 一个数字电路能够可靠工作的比较高数据速率不仅取决于接收端对于 建立/保持时间的要求,输出端的上升时间过缓、输出幅度偏小、信号和时钟中有抖动、信...

与数字信号测试相关的问题
信息来源于互联网 本站不为信息真实性负责