液液聚结技术是从液态流体中去除分散相流体的技术。近年来,非均相液/液流体的分离技术受到石油、化工行业的格外关注,是工艺保障、设备保护、净化流体、成品液回收以及提纯等不可或缺的关键单元。
所述聚结器是一个多级系统;它首先去除颗粒物质,然后聚结和分离连续相液体中的分散相液体。
多阶段系统
阶段1:预过滤
由于的细孔结构的聚结介质,建议在聚结器上游安装一个预过滤器以除去液体流中大部分颗粒物质。安装预滤器可**延长聚结器的使用寿命,并降低过滤器废水中的颗粒物浓度,以满足客户的要求。
聚结滤芯的作用及其工作原理是什么?吉林分相聚结器加工
◎问题由来
液/液分散或乳化通常是在液/液萃取和水洗等工艺操作中发生的。当液体混合物冷 却时,相互溶解能力降低。以蒸汽汽提碳氢化合物为例,当温度降低时液体中析出 水,形成很明显的第二液相,导致产品混浊。同时,在废水处理厂和蒸汽系统及油田出 水处理工艺中,油在水中形成分散相也会引发类似的问题。
这些液体的分离可能很困难,主要取决于两相的物理性质。决定聚结器尺寸和选型 的主要因素之一是界面张力。我们聚结器能处理很宽界面张力范围内的液体。 湖北气液聚结器定制分流于一级滤芯内部,经过过滤水分子长大、聚结的过程,杂质截留在一级滤芯内,聚结的水珠沉降于沉淀槽中。
是目前首先和普通使用的脱水方法。但这种方法只有对直径大于50u m的水珠,并且有足够的停留时间才有效,同时分离罐要求体积较大。而对于直径小于50u m,尤其是直径在1-10u m或更小的水滴,由于在分散体系中极其稳定,用重力沉降法放置若干天也不会出现明显的分离。因此,重力沉降法分离效率很低,对于一些分离效率要求严格的场合,重力沉降法不能满足要求。
传统纤维堆积聚结法则利用玻璃纤维的聚结作用,脱出介质中的游离水。但这种方法的玻璃纤维未经特殊处理,脱水能力及脱水效率低;纤维堆积,结构不合理,纤维易塌落,易受介质中含有的极性表面活性剂污染,聚结作用逐渐丧失。从而影响脱水效果。同时,这种方法后续无分离过程,有些聚结出来但来不及沉降的小水滴仍将随介质一起进入下游,从而影响下游介质的质量。
随着石油化工工业的发展,对烃类介质的脱水技术,无论是在技术的有效性,适用性、经济性等方面要求也越来越高。而上述传统的烃类介质脱水方法在处理能力、工况条件的适用性、脱水能力、脱水效率及运行成本的经济性方面都无法满足石化行业发展的要求。
为此,南通欧泰石化设备有限责任公司运用**技术的液-液聚结分离技术,采用特殊的介质和特殊的结构设计,开发出了先进水平的液-液聚结分离器。这种新型的液-液聚结分离器不仅脱水效率高,运行成本低,而且可以满足不同复杂的工艺和工况要求。
液聚结器的原理及应用。
(5)***气/液聚结器***气/液聚结器的滤芯通常由不锈钢骨架和打褶的玻璃纤维介质制成,同除沫网和挡板式分离器相比,具有更大的表面积。由于采用了直径*有几微米的玻璃纤维为滤材,滤孔直径可以做得很小,能拦截更微小的液滴,所以,气/液聚结器的分离机理同除沫网和挡板式分离器不同,除了惯性碰撞拦截外,还有直接拦截和扩散拦截。直接拦截,即利用滤材的微孔将气流中的液滴拦截到滤材表面;扩散拦截,即利用微小液滴在气流中的不规则运动(布朗运动),增加与滤材碰撞拦截的几率。直接拦截和扩散拦截与惯性碰撞拦截不同,当气体流量减小时,分离效率会上升。设计选型合理的***气/液聚结器,油品从外向内进入二级滤芯,汇集于二级托盘内,从聚结分离器出口流出。四川分离聚结器
真空脱水滤油机与聚结分离脱水哪个脱水效果强。吉林分相聚结器加工
◎应用
广泛应用于石油、化工、机械、电力工业生产中各种碳氢烃类化合物、氯乙烯、航空燃 料、汽油、煤油、柴油、液化石油气、石脑油、苯、甲苯、二甲苯、异丙苯、聚丙苯、 坏乙烷、异丙苯、环乙醇、液压油、润滑油等的脱水,净化,分离。
技术指标
***液/液聚结器设备大流量连续处理;
破乳模块、滤材选型及滤材均通过专业优化设计;
独有的疏油/憎水处理技术脱水效率高、能力强。
比较高可处理分散相含量
10%
处理后的液体中分散相含量 15ppm
A:闪蒸罐出口处的富胺样品。
B: 10um过滤后的富胺样品。
C:单次通过聚结器后,聚结器出口样品
吉林分相聚结器加工
无锡品悦环保科技有限公司是一家有着先进的发展理念,先进的管理经验,在发展过程中不断完善自己,要求自己,不断创新,时刻准备着迎接更多挑战的活力公司,在江苏省等地区的环保中汇聚了大量的人脉以及**,在业界也收获了很多良好的评价,这些都源自于自身的努力和大家共同进步的结果,这些评价对我们而言是比较好的前进动力,也促使我们在以后的道路上保持奋发图强、一往无前的进取创新精神,努力把公司发展战略推向一个新高度,在全体员工共同努力之下,全力拼搏将共同无锡品悦环保科技供应和您一起携手走向更好的未来,创造更有价值的产品,我们将以更好的状态,更认真的态度,更饱满的精力去创造,去拼搏,去努力,让我们一起更好更快的成长!