我公司研制的电力设备监测与诊断技术,特别是在变压器、高压电抗器、高压开关和电力电缆等电力设备的绝缘状态、运行状态的数据分析与状态评价方面,凭借我公司前沿的软硬件技术与先进的监测方法,为运维管理提供了质量的技术服务方案。我公司秉持专注、共赢、远航的经营理念,追求创新,在稳步发展的同时***研制人工智能、大数据云平台、万物互联等技术在电力设备监测与诊断技术上的科学应用,决心成为专注于综合智慧能源服务领域的“中国智造”**者、推动者、先行者,并在公司发展的进程中为客户、股东、员工以及其他合作方和社会创造更多的价值。杭州国洲电力科技有限公司振动声学指纹在线监测技术说明。GIS振动声学指纹在线监测传感器

传统的绕组变形检测方法有低压脉冲法(LVI)、频率响应分析法(FRA)和短路阻抗法(SCI),以上方法*适用于离线或停电检测。铁芯典型故障包括压铁松动、铁芯接地不良、夹件松动或损伤,常用检测方法包括绝缘电阻测试及接地电流监测。采用声学指纹法检测绕组及铁芯状态,适用于带电监测/在线监测,不影响电力变压器/电抗器正常运行,且与设备无电气连接,具有安装方便、安全、可靠等优点。杭州国洲电力科技有限公司结合多年研发及现场经验,成功研制GZAF-1000T系列变压器/电抗器声学指纹监测系统,既有固定安装的长期在线监测,也有便携式的带电力设备监测及诊断技术的“中国智造者”第3页共29页电检测系统及可移动的重症监护系统。监测系统由压电式加速度传感器、驱动电机电流传感器、数据采集装置、云服务器(采用B/S结构)、通讯子系统及供电系统构成,结合包络分析、重合度分析、小波分析、能量分布矩阵、频谱分析等多种算法,并提取故障诊断特征参量,在线状态下实现变压器有载分接开关及本体(绕组及铁芯)全振动监测与故障诊断。GIS振动声学指纹在线监测传感器GZAF-1000S系列高压开关振动声学指纹监测系统--GIS本体监测功能特性。

系统功能:智能分析功能:系统软件内置海量故障特征的数据库,可与测得的数据进行比对,通过信号波形、时间长度和幅值等特征值,诊断分析故障类型;也可添加新测得的数据,方便后期横向、纵向比较;软件可将同一厂家同一型号的正常检测数据进行导入保存,便于对该厂家、型号的变压器数据曲线进行比对分析;具有报表分析功能,自动计算并保存重合度、动作时间、能量分布、电流最大值、电流平均值、绕组及铁芯振动峰值频率、总谐波畸变率、基频能量比、互相关系数等特征参量,并生成分析报表。
振动声学指纹监测技术的应用意义我公司基于振动声学指纹监测技术研制的GZAF-1000系列监测系统适用于变压器/电抗器(绕组、有载分接开关、铁心等)、开关类(GIS、敞开式断路器、隔离开关、开关柜等)等电力设备的带电检测、在线监测与故障诊断,不影响被测设备正常运行,且与被测设备无电气连接,具有安装方便、安全、可靠等优点,主要意义如下:1、采用带电检测/在线监测方式,不影响主设备正常运行,降低了电网风险;2、减少了人员进站检查的运维成本;3、监测方式与设备无电气连接,具有安全、可靠、安装方便等优点;4、采用独特的时域分析、包络分析、重合度对比、时频矩阵分析等方法,并提峰值频率、总谐波畸变率、频谱互相关系数、频率复杂度、振动平稳性、能量相似度、振动相关性等特征参量等特征参量,提高在线监测准确度。5、内置基于海量样本的大数据和人工智能技术而建立的**分析型数据库,可真实反应设备运行状态,有效诊断绕组变形、机械卡涩、触头磨损、电动机构拒动等故障程度和类型;6、符合智慧变电站建设原则,监测系统的IED具备边缘计算能力,就地采集并处理振动声学指纹及其它信号。GZAF-1000S系列高压开关振动声学指纹监测系统--敞开式断路器监测功能特性。

1、2020年10月20日,我公司荣获国网公司设备部的邀请,参与国网设备部组织的关于智慧变电站技术方案审查会,向与会的国网公司设备部、各省公司设备部及各省电科院的领导和**们做了《振动声学指纹监测技术在变电站主设备智慧型综合监测中的作用和实施方案》的汇报,荣获与会的领导和**们的高度认可。如下图25所示:2、2020年10月22日,我公司总经理技术助理王国明博士以技术顾问的身份,参与国网冀北电力有限公司关于智慧物联体系建设专项劳动竞赛成果评审会,会上向国网冀北公司设备运行管理领域的各位领导和**们汇报了《电力设备振动声学指纹监测技术的发展态势和应用前景》,并会中作为厂家**参与技术评审,会后荣获与会的领导和**们的高度认可。杭州国洲电力科技有限公司振动声学指纹在线监测产品特性。GIS振动声学指纹在线监测传感器
GZAF-1000T系列变压器(电抗器)振动声学指纹监测绕组及铁芯运行状态分析。GIS振动声学指纹在线监测传感器
时频能量分布矩阵(ATF图谱)获取振动声学指纹信号时频能量分布矩阵,同时反映原始信号时域、频域特性及能量分布。将信号时频分布矩阵分为6个区间,计算各区间平均值作为特征参量,用于有载分接开关正常状态与异常状态对比。下图12为正常状态下振动声学指纹信号时频能电力设备监测及诊断技术的“中国智造者”第14页共29页量矩阵。图12振动声学指纹信号时频能量矩阵绕组及铁芯运行状态分析下图13(a)为变压器/电抗器运行时的绕组及铁芯振动声学指纹的时域信号。为更直观地分析绕组及铁芯运行状态,采用频域法分析振动声学指纹信号,实现在线状态下的故障监测。如下图13(b)所示,基于振动声学指纹信号的频域分布,提取峰值频率、总谐波畸变率、基频能量比、互相关系数特征参量,以作为变压器/电抗器运行状态的分析参数。GIS振动声学指纹在线监测传感器