振动声学指纹在线监测基本参数
  • 品牌
  • 国洲电力
  • 型号
  • GZAF-1000T系列,GZAF-1000S系列
  • 厂家
  • 国洲电力
振动声学指纹在线监测企业商机

有载分接开关运行状态分析:有载分接开关动作时,典型振动声学指纹和驱动电机电流的信号如下图7所示。通过分解时域内典型信号区间,可有效判断分接开关驱动电机启动、分接选择器断开、分接选择器闭合、切换开关动作、驱动电机制动等动作顺序,进而分析分接开关的运行状态。然而,以上通过典型信号分析判断分接开关的运行状态需要丰富的实践经验,为方便检测人员快速完成诊断任务,需通过多种算法更直观、准确地判断开关状态。变压器/电抗器声学指纹监测系统结合基于小波变换及希尔伯特变换的包络分析、基于互相关系数的重合度分析、基于小波多分辨率分解的能量分布曲线分析、基于时频分布矩阵的信号对比等多种**算法,实现有载分接开关***、有效、准确的状态诊断和早期故障监测,降低变压器/电抗器运行的故障风险。GZAF-1000T系列变压器(电抗器)振动声学指纹监测绕组及铁芯运行状态分析。杭州开关柜振动声学指纹在线监测软件界面

杭州开关柜振动声学指纹在线监测软件界面,振动声学指纹在线监测

敞开式断路器监测:技术背景:敞开式断路器在电力系统中起到保护和控制作用,它根据供电系统运行的需要来可靠地投入或切除相应的线路或电气设备,以确保系统安全运行。实现对断路器机械特性的在线监测,准确得知断路器的工作状态和故障部位,可以有效减小维护工作量,增强检修的针对性,***提高供电系统可靠性和经济性。振动声学指纹信号、线圈分合闸电流、储能电机电流、行程及分合闸位置是断路器非常重要的参数,是衡量断路器性能优劣的重要指标。因此,通过在线监测系统准确提取振动声学指纹、分闸电流、合闸电流、储能电机电流、行程及分合闸位置特征值,对判断断路器的健康程度和工作状态诊断具有重要意义。变压器振动声学指纹在线监测使用说明书GZAF-1000T系列变压器(电抗器)振动声学指纹监测信号分析与处理。

杭州开关柜振动声学指纹在线监测软件界面,振动声学指纹在线监测

绕组及铁芯运行状态分析下图13(a)为变压器/电抗器运行时的绕组及铁芯振动声学指纹的时域信号。为更直观地分析绕组及铁芯运行状态,采用频域法分析振动声学指纹信号,实现在线状态下的故障监测。如下图13(b)所示,基于振动声学指纹信号的频域分布,提取峰值频率、总谐波畸变率、基频能量比、互相关系数特征参量,以作为变压器/电抗器运行状态的分析参数。各特征参量定义及解释如下:(1)峰值频率:频谱图中比较大幅值对应的频率值。(2)总谐波畸变率(TotalHarmonicDistortion,THD):所有50Hz整数倍谐波分量的有效值与基频100Hz分量有效值的比值,计算公式如下:=2其中100Hz基频分量有效值,为频率索引值。正常状态下,由于100Hz基频分量为振动频谱图的主要成分,总谐波畸变率应较小;存在故障时,谐波分量增加且峰值频率发生偏移,总谐波畸变率变大。

(3)基频信号能量比(E):100Hz基频分量时域信号能量占信号总能量的比值,计算公式如下:电力设备监测及诊断技术的“中国智造者”第15页共29页=122其中100Hz基频分量的时域信号,为采样索引值。正常状态下,由于100Hz基频分量为振动声学指纹频谱图的主要成分,基频信号能量比应较大;存在故障时,谐波分量增加且峰值频率发生偏移,基频信号能量比变小。(4)互相关系数(r):正常状态与实时测得振动声学指纹信号频谱图之间的相似度,计算公式如下:=[−−[−[−2其中和分别为正常状态与实时测得振动声学指纹信号的频域分布,信号的平均值,互相关系数范围为0~1。正常运行时,相关系数应接近于1;存在故障时,信号频率分布发生改变,互相关系数减小。杭州国洲电力科技有限公司振动声学指纹在线监测技术方案。

杭州开关柜振动声学指纹在线监测软件界面,振动声学指纹在线监测

3、2020年8月6日,我公司荣获南方电网生产技术部的邀请,作为技术合作商的**参加生产技术部、各分省公司、南网电科院和南网数研院等部门/单位的**们出席的《公司新技术交流会议》,向与会的各位**做了《变压器振动监测技术》的专题汇报。4、2020年11月19日,我公司荣获南网广西电网公司总经办和生产技术部的邀请,向广西电网公司的总经理、副总经理以及生产技术部、电力科学研究院等相关部门和直属单位的领导做了《变压器声纹振动在线监测与故障诊断技术》的专题汇报,获得了领导和**们的称赞与肯定。振动声学指纹监测技术的应用意义。杭州国洲电力振动声学指纹在线监测功能特点

GZAF-1000S系列高压开关振动声学指纹监测系统各类高压开关监测系统的技术参数。杭州开关柜振动声学指纹在线监测软件界面

系统功能:3.4.2监测系统的智慧化功能具备边缘计算能力,就地采集并处理振动声学指纹信号及驱动电机电流信号,完成有载分接开关信号包络、ATF等分析,完成绕组及铁芯振动信号频谱分析及参数计算,根据传输层要求统一通讯接口及数据结构,根据平台层及应用层要求上传分析结果;具备实物ID管理功能,提供有载分接开关、绕组及铁芯运行状态信息链接入口,可扫码读取设备在线监测历史数据及趋势。通过扫码或RFID识别设备,读取设备ID信息,通过站内网络(4G/5G/WIFI)传输给云端服务器,向服务器请求该设备的详细信息,以及详细的运行状态,测试信息等。根据各时频信号互相关系数、能量分布曲线特征参量(互相关系数、最大值、平均值、峰度、偏度)、ATF图谱特征参量(六等分区间均值)、总谐波畸变率、基频信号能量比等状态量,采用深度学习算法,自动判断变压器/电抗器运行状态及机械故障类型。图15基于振动声学指纹的变压器故障诊断结合变压器/电抗器的带电检测、智能巡检以及其他在线监测状态量,杭州开关柜振动声学指纹在线监测软件界面

与振动声学指纹在线监测相关的**
信息来源于互联网 本站不为信息真实性负责