数字信号并行总线与串行总线(Parallel and Serial Bus)
虽然随着技术的发展,现代的数字芯片已经集成了越来越多的功能,但是对于稍微复杂 一点的系统来说,很多时候单独一个芯片很难完成所有的工作,这就需要和其他芯片配合起 来工作。比如现在的CPU的处理能力越来越强,很多CPU内部甚至集成了显示处理的功 能,但是仍然需要配合外部的内存芯片来存储临时的数据,需要配合桥接芯片扩展硬盘、 USB等接口;现代的FPGA内部也可以集成CPU、DSP、RAM、高速收发器等,但有些 场合可能还需要配合用的DSP来进一步提高浮点处理效率,配合额外的内存芯片来扩展 存储空间,配合用的物理层芯片来扩展网口、USB等,或者需要多片FPGA互连来提高处 理能力。所有这一切,都需要用到相应的总线来实现多个数字芯片间的互连。如果我们把 各个功能芯片想象成人体的各个功能,总线就是血脉和经络,通过这些路径,各个功能 模块间才能进行有效的数据交换和协同工作。 示波器进行数字信号的幅度测试;PCI-E测试数字信号测试参考价格
建立时间和保持时间加起来的时间称为建立/保持时间窗口,是接收端对于信号保持在 同一个逻辑状态的**小的时间要求。数字信号的比特宽度如果窄于这个时间窗口就肯定无 法同时满足建立时间和保持时间的要求,所以接收端对于建立/保持时间窗口大小的要求实 际上决定了这个电路能够工作的比较高的数据速率。通常工 作速率高一些的芯片,很短的建 立时间、保持时间就可以保证电路可靠工作,而工作速率低一 些的芯片则会要求比较长的建 立时间和保持时间。
另外要注意的是, 一个数字电路能够可靠工作的比较高数据速率不仅取决于接收端对于 建立/保持时间的要求,输出端的上升时间过缓、输出幅度偏小、信号和时钟中有抖动、信号 有畸变等很多因素都会消耗信号建立/保持时间的裕量。因此一个数字电路能够达到的比较高数据传输速率与发送芯片、接收芯片以及传输路径都有关系。
建立时间和保持时间是数字电路非常重要的概念,是接收端可靠信号接收的**基本要 求,也是数字电路可靠工作的基础。可以说,大部分数字信号的测量项目如数据速率、信号 幅度、眼图、抖动等的测量都是为了间接保证信号满足接收端对建立时间和保持时间的要 求,在以后章节的论述中我们可以慢慢体会。 设备数字信号测试哪里买数字此案好的上升时间(Rising Time);
数字信号基础单端信号与差分信号(Single-end and Differential Signals)
数字总线大部分使用单端信号做信号传输,如TTL/CMOS信号都是单端信号。所谓单端信号,是指用一根信号线的高低电平的变化来进行0、1信息的传输,这个电平的高低变化是相对于其公共的参考地平面的。单端信号由于结构简单,可以用简单的晶体管电路实现,而且集成度高、功耗低,因此在数字电路中得到的应用。是一个单端信号的传输模型。
当信号传输速率更高时,为了减小信号的跳变时间和功耗,信号的幅度一般都会相应减小。比如以前大量使用的5V的TTL信号现在使用越来越少,更多使用的是3.3V/2.5V/1.8V/1.5V/1.2V的LVTTL电平,但是信号幅度减小带来的问题是对噪声的容忍能力会变差一些。进一步,很多数字总线现在需要传输更长的距离,从原来芯片间的互连变成板卡间的互连甚至设备间的互连,信号穿过不同的设备时会受到更多噪声的干扰。更极端的情况是收发端的参考地平面可能也不是等电位的。因此,当信号速率变高、传输距离变长后仍然使用单端的方式进行信号传输会带来很大的问题。图1.12是一个受到严重共模噪声干扰的单端信号,对于这种信号,无论接收端的电平判决阈值设置在哪里都可能造成信号的误判。
数据经过8b/10b编码后有以下优点:
(1)有足够多的跳变沿,可以从数据中进行时钟恢复。正常传输的数据中可能会有比较长的连续的0或者连续的1,而进行完8b/10b编码后,其编码规则保证了编码后的数据流中不会出现超过5个连续的0或1,信号中会出现足够多的跳变沿,因此可以采用嵌入式的时钟方式,即接收端可以从数据流中通过PLL电路直接恢复时钟,不需要专门的时钟传输通道。
(2)直流平衡,可以采用AC耦合方式。经过编码后数据中不会出现连续的0或者1, 但还是有可能在某个时间段内0或者1的数量偏多一些。从上面的编码表中我们可以看 到,同一个Byte对应有正、负两组10bit的编码, 一个编码中1的数量多一些,另一个编码中 0 的数量多一些。数据在对当前的Byte进行8b/10b编码传输时,会根据前面历史传输的 数据中正负bit的数量来选择使用哪一组编码,从而可以保证总线上正负bit的数量在任何 时刻基本都是平衡的,也就是直流点不会发生大的变化。直流点平衡以后,在信号传输的路 径上我们就可以采用AC耦合方式(常用的方法是在发送端或接收端串接隔直电容),这 样信号对于收发端的地电平变化和共模噪声的抵抗能力进一步增强,可以传输更远的距离。 数字信号是离散的。它的幅度被限制在一个确定的值。
伪随机码型(PRBS)
在进行数字接口的测试时,有时会用到一些特定的测试码型。比如我们在进行信号质量测试时,如果被测件发送的只是一些规律跳变的码型,可能不了真实通信时的恶劣情况,所以测试时我们会希望被测件发出的数据尽可能地随机以恶劣的情况。同时,因为这种数据流很多时候只是为了测试使用的,用户的被测件在正常工作时还是要根据特定的协议发送真实的数据流,因此产生这种随机数据码流的电路比较好尽可能简单,不要额外占用太多的硬件资源。那么怎么用简单的方法产生尽可能随机一些的数据流输出呢?首先,因为真正随机的码流是很难用简单的电路实现的,所以我们只需要生成尽可能随机的码流就可以了,其中常用的一种数据码流是PRBS(PseudoRandomBinarySequence,伪随机码)码流。PRBS码的产生非常简单,图1.21是PRBS7的产生原理,只需要用到7个移位寄存器和简单的异或门就可以实现。 数字 信号处理系统的基本组成;校准数字信号测试价格多少
幅度测量是数字信号常用的测量,也是很多其他参数侧鲁昂的基础。PCI-E测试数字信号测试参考价格
要把并行的信号通过串行总线传输,一般需要对数据进行并/串转换。为了进一步减少传输线的数量和提高传输距离,很多高速数据总线采用嵌入式时钟和8b/10b的数据编码方式。8b/10b编码由于直流平衡、支持AC耦合、可嵌入时钟信息、抗共模干扰能力强、编解码结构相对简单等优点,在很多高速的数字总线如FiberChannel、PCIe、SATA、USB3.0、DisplayPort、XAUI、RapidIO等接口上得到广泛应用。图1.20是一路串行的2.5Gbps的8b/10b编码后的数据流以及相应的解码结果,从中可以明显看到解出的K28.5等控制码以及相应的数据信息。PCI-E测试数字信号测试参考价格
深圳市力恩科技有限公司致力于仪器仪表,以科技创新实现高质量管理的追求。力恩科技作为仪器仪表的企业之一,为客户提供良好的实验室配套,误码仪/示波器,矢量网络分析仪,协议分析仪。力恩科技继续坚定不移地走高质量发展道路,既要实现基本面稳定增长,又要聚焦关键领域,实现转型再突破。力恩科技始终关注仪器仪表市场,以敏锐的市场洞察力,实现与客户的成长共赢。
数字信号基础单端信号与差分信号(Single-end and Differential Signals) 数字总线大部分使用单端信号做信号传输,如TTL/CMOS信号都是单端信号。所谓单端信号,是指用一根信号线的高低电平的变化来进行0、1信息的传输,这个电平的高低变化是相对于其公共的参考地平面的。单端信号由于结构简单,可以用简单的晶体管电路实现,而且集成度高、功耗低,因此在数字电路中得到的应用。是一个单端信号的传输模型。 当信号传输速率更高时,为了减小信号的跳变时间和功耗,信号的幅度一般都会相应减小。比如以前大量使用的5V的TTL信号现在使用越来越少,更多使用的是3.3V/...