科技进程的加速,产品的品质化与智能化要求在日益扩增。生产制造商对于产品的质检体系需要不断地更新升级,跨越了从人工检测到传统的视觉检测再到具有深度学习算法的智能检测这一整条进化链,深度学习算法弥补了传统算法无法检测复杂特征的漏缺,免去了人工提取特征这一耗时耗力的步骤,更大程度为生产企业提升制造效率。然而凡事都有两面性,深度学习算法也不例外,...
查看详细 >>人工智能成为了时下科技的关键词之一,生活中有越来越多的人工智能产物走进我们的视野,其中AI视觉的这一产业链也在迅速地延伸,AI视觉中的各种硬件和算法也随之衍生,AI视觉主要通过对图像的分析处理进而识别得出相应需要的视觉结果。AI视觉的产生给现代企业的生产制造提供了更高效的检测方式,同时带来了更多的机遇,AI视觉检测的优势远远超越了人工检测...
查看详细 >>爱为视(AIVS)新一代炉前智能插件检测设备,为全球第1款不用设置参数的AOI!极速编程10分钟上手之“SPC”功能: 1.提供实时实用的统计分析数据; 2.能够快速了解当前品质与效率状况; 3.提供多样统计的分析图(例如ID错误频次、名称错误频次、直通率等) 柏拉图和趋势图,便于管理者观察主要问题以及质量趋势...
查看详细 >>在数字化的技术时代,能效标签、条形码已经成为了我们生活中随处可见的一种标识,它们承载着各种商品的能效、规格型号及产品信息代码等信息指标,帮助人们认识产品的一个基本性能参数及产品信息等。其中能效标签几乎覆盖了所有的各类耗能产品,如我们生活中普遍用到的的冰箱、空调、洗衣机、电扇、计算机显示器等等。随着生产企业在实际生产中对生产效率的要求增高,...
查看详细 >>视觉世界,是无限变化的,系统设计者有无数种方法使用视觉数据。其中,有一些应用案例,例如目标识别以及定位,都是可以通过深度学习技术,来得到很好的解决的。因此,如果你的应用,需要一种算法来识别家具,那么你很幸运:你可以选择一种深度神经网络算法,并且使用自己的数据集,对其进行重新编译。我们要先看看这个数据集。训练数据,对有效的深度学习算法是至关...
查看详细 >>图像处理上,随着图像高精度的边缘信息的提取,很多原本混合在背景噪声中难以直接检测的低对比度瑕疵开始得到分辨。模式识别上,本身可以看作一个标记过程,在一定量度或观测的基础上,把待识模式划分到各自的模式中去。图像识别中运用得较多的主要是决策理论和结构方法。决策理论方法的基础是决策函数,利用它对模式向量进行分类识别,是以定时描述(如统计纹理)为...
查看详细 >>人类的感知系统,有83%以上是通过人眼来完成的,而人类的眼睛又是所有动物里面综合性能排前列的,其图像包含的信息量是非常巨大的。不仅要用到单个的立体视觉成像,还要用到整体视觉能力,所以人眼的立体视觉能力和颜色辨别能力远超过动物的眼睛。其中,对个体的感知是人眼基本的功能——对自身和对象位移的测量,尺寸的测量。而主要的功能是对自身以及对象位置的...
查看详细 >>几乎所有产品都需要检测,而人工检测存在着较多的弊端,人工检测准确性低,长时间工作的话,准确性更是无法保证,而且检测速度慢,容易影响整个生产过程的效率。因此,机器视觉在图像检测的应用方面也非常的广,例如:硬币边缘字符的检测。2000年10月新发行的第五套人民币中,壹圆硬币的侧边增强了防伪功能,鉴于生产过程的严格控制要求,在造币的一道工序上安...
查看详细 >>在生产线上,人来做此类测量和判断会因疲劳、个人之间的差异等产生误差和错误,但是机器却会不知疲倦地、稳定地进行下去。一般来说,机器视觉系统包括了照明系统、镜头、摄像系统和图像处理系统。对于每一个应用,我们都需要考虑系统的运行速度和图像的处理速度、使用彩色还是黑白摄像机、检测目标的尺寸还是检测目标有无缺陷、视场需要多大、分辨率需要多高、对比度...
查看详细 >>如果把AI视觉比作一个个体,那么深度学习便成为这一个体中重要的机体之一,许多功能的存在直接来源且依赖于它。直观点说,深度学习算法成功运用于计算机视觉的实例如人脸识别、图像**、物体检测与追踪等。人工检测在早期的工业质检中占有一定的优势,但随着生产科技的不端更新进步,制造环节对于检验水平的要求也越来越高,显然人工检查已无法满足,检测程度越来...
查看详细 >>当今企业之间的竞争,已经不允许哪怕是0.1%的缺陷存在。有些时候,如微小尺寸的精确快速测量,形状匹配,颜色辨识等,用人眼根本无法连续稳定地进行,其它物理量传感器也难有用武之地。在现代工业自动化生产中,涉及到各种各样的检查、测量和零件识别应用,例如汽车零配件尺寸检查和自动装配的完整性检查,电子装配线的元件自动定位,饮料瓶盖的印刷质量检查,产...
查看详细 >>视觉世界,是无限变化的,系统设计者有无数种方法使用视觉数据。其中,有一些应用案例,例如目标识别以及定位,都是可以通过深度学习技术,来得到很好的解决的。因此,如果你的应用,需要一种算法来识别家具,那么你很幸运:你可以选择一种深度神经网络算法,并且使用自己的数据集,对其进行重新编译。我们要先看看这个数据集。训练数据,对有效的深度学习算法是至关...
查看详细 >>