AI深度学习算法是近几年兴起的热门的一种人工智能算法,大量的案例证明,AI在外观检查领域的应用是大势所趋,使得AI算法更加便利于以后软件的升级优化。由于被检测产品的原料可能有不同的厂家,导致同款产品在颜色、亮度乃至对比度等方面都有差异,深度学习测试效果可以达到稳定,并提高检测能力。被检测产品换型频繁,AI算法只需要前期训练好模型,后续换型是不要做任何参数调整就可以完成,提高切换检测产品的时间,使用AI深度学习算法可在保证不良品无流出的情况下将不良率降低。爱为视DIP 插件炉前检测,使用的是22寸/23.8寸FHD大视角显示器。湖北新一代智能AOI销售

爱为视(Aivs)新一代智能AOI运用高速高精度视觉处理技术自动检测PCB板上各种不同帖装错误及焊接缺陷。PCB板的范围可从细间距高密度板到低密度大尺寸板,并可提供在线检测方案,以提高生产效率,及焊接质量。通过使用爱为视(Aivs)新一代智能AOI作为减少缺陷的工具,在装配工艺过程的早期查找和消除错误,以实现良好的过程控制。早期发现缺陷将避免将坏板送到随后的装配阶段,爱为视(Aivs)新一代智能AOI将减少修理成本将避免报废不可修理的电路板。上海插件AOI系统爱为视智能科技有限公司为广大客户提供专业、热情、高效售后服务。

用双眼观察世界是人类与生俱来的、非常重要的生物功能之一,也是人类认识世界和改造世界的主要途径。而在漫长的文明演化的道路中,为了弥补人类视觉的天然短板,看到更广阔的世界,善于利用工具的人类发明了机器,从模仿人类视觉开始,渐渐步入超越人类视觉的道路,随着人工智能的步伐不断演进。早期机器局限于感光材料和技术只能记录黑白色彩,直至19世纪末光学研究出现新的突破,彩色在摄影师带有滤镜的拍摄和后期合成中显现,使得机器视觉迈上首步台阶。
一般而言,通过算法产生的数据集几乎含括每个缺陷类型100个以上图像,利用网络建立对应模型,从而实现对所输入图像的对象进行识别和分类。简单举例,现代的食品制造公司所采用的视觉检测设备通常有深度学习算法,这一功能便能直接辅助检测包装上是否存在某些特定图像、字符等。 深度学习更善于解决复杂外观表面及缺陷。比如旋转时扫查零件表面的突出特征如划痕、凹痕等,深度学习在定位、识别、分类等各项细分功能中对于图像处理有一个好处以及相对于传统机器视觉的不同之处,即它拥有在概念基础上对零件外观进行概念化和概括的能力。爱为视DIP 插件炉前检测-台面式可检PCBA尺寸:宽度400mm,长度不限。

工控主机/操作系统:CPU:inteli59600KF,GPU:NVIDIA独立显卡显存:8G/6G,内存/硬盘存储:16GDDR4/2T操作系统:Ubuntu.19.2LTS64bit显示器:22寸/23.8寸FHD大视角显示器网络:千兆网卡
算法:卷积神经网络、先进深度学习模型、计算机视觉、图形图像处理、OCR等
检测内容:手插元器件的错件、漏件、极性反向、多插、歪斜、字符、条码、二维码等检测
混板模式:可支持6种机型,程序自动调用
生产的同时可编辑模板
远程调试/离线编程:支持客户离线编程、客户远程调控、远程调试
卷积神经网络是爱为视的关键技术。上海新一代AOI外观检测
深度学习技术是使用神经网络,通过这些神经网络模仿人类水平的智能,来进行异常区分。湖北新一代智能AOI销售
爱为视(AIVS)极速编程以及傻瓜式操作的过程是什么样的呢!带您来看看,通过4种建模方式之“抓图建模”:登录系统—标注文件管理—选择模板图片—抓图辅助建模,当PCBA经过设备时自动抓拍进行建模!全程傻瓜式操作!
四种建模方式之“取图—模板迁移”适用于首件机型与已生产过的旧机型类似(如共PCBA的机型,多器件或者少器件),让您的建模更加高效!
四种建模方式之“抓图—模板迁移”,适用于建模的模板位置抓拍不合适,再次进行抓图用之前的模板进行迁移建模,更加高效! 湖北新一代智能AOI销售
深圳爱为视智能科技有限公司专注技术创新和产品研发,发展规模团队不断壮大。公司目前拥有较多的高技术人才,以不断增强企业重点竞争力,加快企业技术创新,实现稳健生产经营。诚实、守信是对企业的经营要求,也是我们做人的基本准则。公司致力于打造***的智能视觉检测设备。公司力求给客户提供全数良好服务,我们相信诚实正直、开拓进取地为公司发展做正确的事情,将为公司和个人带来共同的利益和进步。经过几年的发展,已成为智能视觉检测设备行业出名企业。