深度学习可以让那些拥有多个处理层的计算模型来学习具有多层次抽象的数据的表示。这些方法在许多方面都带来了明显的改善,包括先进的语音识别、视觉对象识别、对象检测和许多其它领域。深度学习能够发现大数据中的复杂结构。深度卷积网络在处理图像、视频、语音和音频方面带来了突破,而递归网络在处理序列数据,比如文本和语音方面表现出了闪亮的一面。 深度学习就是一种特征学习方法,把原始数据通过一些简单的但是非线性的模型转变成为更高层次的,更加抽象的表达。通过足够多的转换的组合,非常复杂的函数也可以被学习。卷积神经网络的输入层可以处理多维数据。插件AOI升级换代
工控主机/操作系统:CPU:inteli59600KF,GPU:NVIDIA独立显卡显存:8G/6G,内存/硬盘存储:16GDDR4/2T操作系统:Ubuntu.19.2LTS64bit显示器:22寸/23.8寸FHD大视角显示器网络:千兆网卡
算法:卷积神经网络、先进深度学习模型、计算机视觉、图形图像处理、OCR等
检测内容:手插元器件的错件、漏件、极性反向、多插、歪斜、字符、条码、二维码等检测
混板模式:可支持6种机型,程序自动调用
生产的同时可编辑模板
远程调试/离线编程:支持客户离线编程、客户远程调控、远程调试
江西离线AOI检测“深度”一词通常是指神经网络中的隐藏层数。
比如客户需要分出缺陷种类,他们用传统方法花了两个月时间调好之后,如果换另外一种物料,又得重新调,这种情况便适合使用深度学习。然而对于没有进行训练的缺陷出现,深度学习就没有办法检测出来。如果生产的过程中出现这种情况,用传统的方法和深度学习一起应用,传统的方法解决传统的、快速的问题,甚至把合格品分出来,再用深度工具去做一些瑕疵的分类。随着智能化水平不断提高,不断发现实际应用中的问题,并优化产品解决方案是企业能够站稳市场位置的一个重要关键点。
爱为视新一代智能插件AOI,采用卷积神经网络、先进深度学习模型,计算机视觉、图形图像处理等技术,解决AOI 编程复杂、误报多的行业痛点,提供插件炉前错、漏、反、多、歪斜等缺陷检测方案。其具有无需设置参数、软件辅助极速建模、无需专业操作人员,支持器件局部检测等中心优势;中心优势:一、软件辅助建模:极速建模,一键智能搜索80多种器件;二、无需设置参数:1.采用智能算法、自动框图比例高;2.无需抽色、无需调饱和度、色相、无需调容忍度、阈值;三、无需专业操作人员:1.傻瓜式操作,2.会操作电脑的产线员工即可使用;四、支持局部检测:支持器件本体大部分特征相同局部有差异的器件检测爱为视专注智能视觉,见证中国好品质。
一是分类,即可以将产品分为合格和不合格,这是深度学习很重要的一个应用;二是定位,即帮助使用者定位物体的位置和数量;三是分割,即可以找到缺陷的轮廓,基于缺陷的轮廓和大小,对产品进行更精细的判别。通过深度学习算法,软件可以自动学习瑕疵的特征,使得无规律图像的分析变得可能;在精确度方面,可通过深度学习算法和制造业特有的数据提高检测的精确度;虽然深度学习在很多方面具有优势,不过也并不是所有任务都适用。深度学习对瑕疵分类更有优势。爱为视炉前插件检测可应用于工控、汽车、家电等行业。插件AOI设备
AI视觉检测系统可以在哪些行业使用?插件AOI升级换代
多重智能算法检测:1、智能识别铝电容顶部字符;2、智能识别黑灰电容字符;3、智能识别黑电感字符或方向;4、智能识别电池座方向;5、小铁片检测;6、智能识别聚丙烯电容字符;7、电线检测;8、金属高频头螺纹/光头检测;9、智能识别变压器字符;10、智能识别蜂鸣器方向;11、智能识别晶振字符;12、智能识别东倒西歪的电容极性。13、三极管方向检测;
学习:1、支持系统学习训练,学习越多效果越好;2、支持本地学习。局部检测:支持器件局部检测; 插件AOI升级换代
深圳爱为视智能科技有限公司位于西丽街道曙光社区中山园路1001号TCL科学园区E3栋201之218,交通便利,环境优美,是一家其他型企业。公司是一家有限责任公司企业,以诚信务实的创业精神、专业的管理团队、踏实的职工队伍,努力为广大用户提供***的产品。公司始终坚持客户需求优先的原则,致力于提供高质量的智能视觉检测设备。爱为视顺应时代发展和市场需求,通过**技术,力图保证高规格高质量的智能视觉检测设备。