三甲基氢醌均相催化系有:磷钼酸或硅钼酸/CuS02催化体系;磷钼酸/二甲亚砜叔丁醇钾催化体系;金属邻羟基苯甲醛络合物;乙酰钒,钒酸钠;四苯基卟啉锰氯(TPPMnCl);N羟基邻苯-甲酰亚胺/CuCl2等。多相催化体系有:负载的金属(salen);钌负载的镁铝水滑石;Cu/Co/Fe负载的镁铝水滑石;钼钒磷酸盐负载的活性炭等。氧代异佛尔酮的重排和酰化:在催化剂存在下,KIP与酰化剂(如酰酐、酰卤或烯醇酯)发生酰化反应生成TMHQ-DA,再经皂化生成三甲基氢醌醋酸酯(TMHQ-1-MA)或者TMHQ。TMHQ-1-MA可直接与异植物醇反应生成维生素E的主要成分a-维他命E。若无部门许可,勿将材料排入周围环境。湖南三甲基氢醌市场概况

与乙酸乙酯不同,水在LBA中表现出小的溶解度。水和回收溶剂的分离非常容易。并且残留的水几乎不影响溶剂的再利用或氢化反应。在催化剂的再利用研究中,从第四次催化剂再利用中采用回收的LBA。溶剂再利用的结果表明氢化反应对回收的LBA中的少量残余水不敏感。尽管LBA的沸点高,但蒸汽蒸馏的温度很低(温度为104℃)。因此,能量消耗不是很高,并且被接受用于该过程。此外,高沸点降低了LBA的挥发损失。因此,可以以高速率回收LBA。与甲醇不同,溶剂LBA的使用提供了分离产物(三甲基氢醌)的精细外观。长沙2 3 5 三甲基氢醌价格氧化催化剂和雷尼镍催化剂的制备,以间甲酚为起始原料,使用催化剂合成三甲基氢醌,收率达75%以上。

当通过流蒸馏完全除去溶剂时,加入1.2gNa2S2O4并将混合物在30min内冷却至室温。过滤后,将分离的湿TMHQ在70℃下干燥3h,得到产物。分析:使用外标法通过反相HPLC(C18,ϕ4.6×150×mm2)分析三甲基氢醌样品。流动相为甲醇/水(50/50,v/v),流速保持在1.0mL/min。测量波长为280nm。氢化摩尔产率定义为通过HPLC测定的滤液中TMHQ的摩尔数与当初在反应中取得的TMBQ的总摩尔数之比。总摩尔产率定义为分离的TMHQ产物的摩尔数与当初在反应中取得的TMBQ的总摩尔数之比。反应时间定义为从间歇输入氢气开始到反应结束的时间。
甲醇作为溶剂的使用,往往使三甲基氢醌更容易着色,这直接影响到TMHQ的质量。同时,由于甲醇与水的混溶性,很难再利用。雷尼镍对三甲基氢醌的另一个催化加氢过程是以甲基叔丁基醚为溶剂,但是其闪点低,且具有炸裂性。本研究以工业级乙酸正丁酯、乙酸丙酯、正丁醚混合溶剂LBA(乙酸正丁酯,乙酸丙酯和丁醚的商业混合溶剂)为溶剂,采用Pd/C催化剂,开发出一种高效的TMHQ生产工艺。溶剂效应研究表明,LBA是TMBQ催化加氢反应的优良溶剂。对反应参数进行了优化,得到了高产率、高选择性的TMHQ。同时,提出了加氢机理。三甲基氢醌( 2,3,5-三甲基对苯二醌,TMHQ) 为白色或类白色晶体,是工业合成维生素E 的重要中间体。

LBA具有后处理简单,回收率高,毒性低,安全可靠等显着优点。三甲基氢醌Pd/C催化剂的表征:在原子吸收光谱仪上分析Pd/C催化剂,以确定在一定催化周期后活性组分的损失。所用的Pd/C催化剂在14个循环(样品1)和11个循环(样品2)后的活性组分分别为3.26%和3.27%,与3.57%的新鲜催化剂相比有略微降低。因此,用过的催化剂的失活,不是氢化过程中活性组分Pd的损失造成的。在XRD图案中,Pd的特征衍射峰位于约40.0°和46.6°的2h值处。它们分别对应于Pd的面心立方晶体的Pd(111)和(200)晶体表面的2h值。在离子隔膜电解槽中,电解合成TMBQ的电流效率为47%,偏三甲苯的总转化率为58.8%。河北三甲基氢醌合成方法
三甲基氢醌摩尔体积(cm3/mol):135.1。湖南三甲基氢醌市场概况
偏三甲苯磺化、水解法:偏三甲苯经磺化、硝化、加氢还原得到2.45-三甲基-3.6二氨基苯磺酸,水解脱磺酸基再经氧化和加氢得到TMHQ(Scheme2),收率达到59.2%。虽然此工艺的原料价廉易得,生产成本较低,但反应流程长,工序多,收率相对较低,且生产过程中产生的大量含酚废水严重污染环境。以偏三甲苯为原料.,直接在修饰钛的铂电极上电解生成三甲基苯醌,三甲基苯醌再经加氢还原得TMHQ(Scheme3)。此工艺过程简单,废水较少,有一定的应用价值,不足之处在于产品的收率较低。湖南三甲基氢醌市场概况