在重排和酰化过程中,三甲基氢醌传统的催化剂是路易斯酸和布氏酸,如HF、三氟甲基磺酸、氯磺酸、多磷酸、发烟硫酸以及这些酸的混合物。在此类质子酸的存在下发生重排酰化,从而制取TMHQ。此类催化剂优点是反应活性很高,缺点是腐蚀性太强,易形成酸气流,且在中和反应后会有大量的盐生成,不利于产品提纯和净化。固体酸因其不易腐蚀设备,且反应后容易分离回收,因而受到普遍关注。研究较多的固体酸催化剂是铟盐,选择三价铟盐,如InC];以及全氟化的磺酸树脂。此类催化剂具有和硫酸--样高的活性,可使原料转化率达到100%但不耐高温,稳定性较弱,不便于重复利用。2,3,5-三甲基氢醌(TMHQ)是合成维生素E的重要中间体。山西三甲基氢醌 合成工艺
较高氢气压力的苛刻反应条件使选择性下降,而且还增加了设备要求和生产成本。结果表明氢气压力为0.5-0.6MPa是合适的。催化剂的再利用:用新鲜催化剂在1小时内获得96.6%的分离摩尔产率。对于随后的运行,每回合补充0.35g新鲜催化剂。从第四次催化剂再利用中回收了LBA。催化剂在重复使用前用LBA溶剂清洗。值得注意的是,在催化剂的再利用研究过程中,为了得到较高的三甲基氢醌分离摩尔产率,反应时间明显延长。对于第三次重复使用,反应时间显着延长至6.3小时。然而,自第三次重复使用后,反应时间保持在约7h。河北三甲基氢醌二乙酸酯2,3,5-三甲基氢醌(TMHQ),可与异植物醇反应制得维生素E,是合成维生素E的关键中间体。
在三甲基氢醌(2,3,5-三甲基对苯二醌,TMHQ)的汽油(或石油醚)溶液中,搅拌下加入保险粉溶液,室温搅拌3h,过滤,滤饼用0.5%保险粉溶液洗涤,干燥,得三甲基对苯二酚。有机中间体、医药中间体,是维生素E的主环,与异植物醇缩合得到维生素E。产品规格:98.5%。产品包装:25kg/桶、40kg/桶、50kg/桶缩口纸桶或铁桶包装,用双层塑料袋、双道铜蕊线扎口。产品贮运:贮存于阴凉、干燥处。按二类危险品进行运输。保质期:12个月。三甲基氢醌和异植物醇是合成维生素E的两个中间体,目前世界市场上的三甲基氢醌主要由德国公司生产,远不能满足维生素E的需求。
在US4046813中描述了一种有机碱吡啶存在下,使用铅、钒、铬、锰、铁、钴等的乙酰配合物为催化剂。催化氧化β异佛尔酮制备氧代异佛尔酮的方法,该方法虽然具有约100%的转化率,但同时反应还容易使β异佛尔酮向a-异佛尔酮异构化转化,且反应中又容易形成高聚的副产物,所以使得反应的选择性下降。在US6297404和US6300521中,描述了一种在DMF或DMA以及三丙胺存在下,使用席夫碱及乙酸锂或乙酸铵的催化体系催化氧化β异佛尔酮的方法,该制备三甲基氢醌方法一个较大的缺陷就是反应容易产生3.5.5-三甲基环己-2-烯1酮和2,2,6三甲基环己烷1,4-二酮等副产物。三甲基氢醌和异植物醇是合成维生素E的两个中间体。
用PANAalyticalX'pertPorX射线衍射仪进行X射线衍射(XRD)测量。衍射光谱在30-50°的2h范围内以0.02°的步幅记录。用PerkinElmerDiamond热分析仪进行差示热重(DTG)研究。在氮气氛围(流速,100mL/min)下,以10℃/min的加热速率从环境温度至900℃进行测量。加氢机理:RaneyNi的加氢反应,并利用Langmuir-Hinshelwood模型,考虑到在非均相催化剂上的吸附作用,清楚地解释了动力学观察结果。根据我们的相关结果,提出了三甲基氢醌过程Pd/C催化加氢的加氢机理。偏三甲苯直接氧化法与电解法同为两步反应。山西三甲基氢醌 合成工艺
三甲基氢醌的合成方法,重点介绍了1,2,4-三甲基路线和苯酚路线。山西三甲基氢醌 合成工艺
三甲基氢醌是2,3,6-三甲基苯酚(TMP)的直接羟基化。它通常是以H2O2作为氧化剂和自制催化剂进行。然而,TMP的转化率通常却低于40%。另外,还有采用一些三甲基苯酚的生物催化羟化方法来合成TMHQ的工艺已经取得关注。其次,是使用异佛尔酮制备。以异佛尔酮为起始原料,工艺较为复杂,包括异构化,水解,转位等。第三,是还原2,3,5-三甲基苯醌(TMBQ)。TMBQ可以通过Na2S2O4 或通过催化氢化来还原。但是存在缺点,例如低产量,严重污染和大量废水,导致Na2S2O4还原过程逐步淘汰。山西三甲基氢醌 合成工艺