三甲基氢醌工艺的技术关键在于异佛尔酮的氧化,以及氧代异佛尔酮的重排和酰化。β异佛尔酮氧化法:长期以来,将β异佛尔酮(β-IP)氧化为氧代异佛尔酮一直是化学化工领域研究的热点,目前已报道的文献和**已非常之多。总的来说,目前β异佛尔酮的氧化主要是以过渡金属的有机配位化合物和无金属催化体系为催化剂,以分子氧或空气氧化,很多的时候会加入一些添加剂(比如助溶剂等)。反应采用的催化剂主要有:过渡金属盐催化剂、过渡金属的席夫碱催化剂、过渡金属的乙酰配合物催化剂、离子液体支载的Z酰金属复合物催化剂、过渡金属的卟啉或酞菁配合物催化剂、全金属催化剂和无金属催化体系催化剂等。两未知杂质经结构鉴定为2,5-二甲基氢醌和2,3,5-三甲基-2-环已烯-1,4-二酮,后者为第1次报道。江苏2 3 5三甲基氢醌
在重排和酰化过程中,三甲基氢醌传统的催化剂是路易斯酸和布氏酸,如HF、三氟甲基磺酸、氯磺酸、多磷酸、发烟硫酸以及这些酸的混合物。在此类质子酸的存在下发生重排酰化,从而制取TMHQ。此类催化剂优点是反应活性很高,缺点是腐蚀性太强,易形成酸气流,且在中和反应后会有大量的盐生成,不利于产品提纯和净化。固体酸因其不易腐蚀设备,且反应后容易分离回收,因而受到普遍关注。研究较多的固体酸催化剂是铟盐,选择三价铟盐,如InC];以及全氟化的磺酸树脂。此类催化剂具有和硫酸--样高的活性,可使原料转化率达到100%但不耐高温,稳定性较弱,不便于重复利用。江苏2 3 5三甲基氢醌采用简易方法以两步合成了维生素E的重要中间体2,3,5-三甲基氢醌。
金属有机骨架(metal-organic frameworks,MOFs)材料,是利用无机金属离子与有机配体间的金属一配体络合作用而自组装形成的具有规则孔道或者孔穴结构的三维晶态多孔材料。MOFs不自身具有很好的催化活性,由于其独特的物化性质,作为催化剂载体在催化加氢领域也有普遍的应用,经常用来负载贵金属催化剂,主要是由于其巨大的比表面积和很小的孔尺寸,有利于金属纳米颗粒的均匀分散,从而提高了金属的催化活性。在以下几个方面展开了工作: 本论文以活性炭为载体、贵金属Pd为活性组分,三甲基氢醌采用浸渍法制备了5.0 wt.% Pd/C催化剂,用N2吸附和TEM技术对催化剂进行了表征。
三甲基氢醌催化加氢工艺是具有环保、经济和高度自动化的特点,因此受到了更多的关注。反应溶剂的选择和性质在催化加氢过程中至关重要。在贵金属催化反应中通常采用包括乙醇、甲醇、乙酸异丙酯和异丁醇等溶剂。以雷尼镍为催化剂,溶剂可以是甲基叔丁基醚或甲醇。据我们所知,目前两种用于TMHQ工业生产的工艺流程是以雷尼镍为催化剂,以甲醇或甲基叔丁基醚为溶剂进行催化加氢。在甲醇中雷尼镍加氢TMBQ工艺中,催化剂的可回收性和溶剂回收率均不高。天然存在的维生素E非常有限,因而适时的投产和扩大维生素E的生产都会带来较好的经济效益。
在典型的三甲基氢醌方法中,将LBA(300mL),TMBQ(30g)和Pd/C催化剂(0.71g)加入KCFD05-10高压釜中,并在室温下用氢气(0.3MPa)反复吹扫。通过控制内部盘管中的加热速率和冷却水的流速,将反应温度保持在90℃,搅拌速度控制在800rpm,并通过间歇地供应氢气来控制氢气压力在0.5和0.6MPa之间。当氢气压力在没有供应氢气的情况下保持不变10min时,认为反应已经完成。将反应混合物在90℃下保温30min后,过滤以除去催化剂。将滤液在180℃下蒸馏除去70-80%的溶剂,然后加入120g水。在离子隔膜电解槽中,电解合成TMBQ的电流效率为47%,偏三甲苯的总转化率为58.8%。浙江三甲基氢醌市场概况
所以在近十几年,甚至二十几年内,2,3,5-三甲基氢醌的未来市场并不会处于饱和状态。江苏2 3 5三甲基氢醌
三甲基氢醌均相催化系有:磷钼酸或硅钼酸/CuS02催化体系;磷钼酸/二甲亚砜叔丁醇钾催化体系;金属邻羟基苯甲醛络合物;乙酰钒,钒酸钠;四苯基卟啉锰氯(TPPMnCl);N羟基邻苯-甲酰亚胺/CuCl2等。多相催化体系有:负载的金属(salen);钌负载的镁铝水滑石;Cu/Co/Fe负载的镁铝水滑石;钼钒磷酸盐负载的活性炭等。氧代异佛尔酮的重排和酰化:在催化剂存在下,KIP与酰化剂(如酰酐、酰卤或烯醇酯)发生酰化反应生成TMHQ-DA,再经皂化生成三甲基氢醌醋酸酯(TMHQ-1-MA)或者TMHQ。TMHQ-1-MA可直接与异植物醇反应生成维生素E的主要成分a-维他命E。江苏2 3 5三甲基氢醌