湿法刻蚀是集成电路制造工艺采用的技术之一。虽然由于受其刻蚀的各向同性的限制,使得大部分的湿法刻蚀工艺被具有各向异性的干法刻蚀替代,但是它在尺寸较大的非关键层清洗中依然发挥着重要的作用。尤其是在对氧化物去除残留与表皮剥离的刻蚀中,比干法刻蚀更为有效和经济。湿法刻蚀的对象主要有氧化硅、氮化硅、单晶硅或多晶硅等。湿法刻蚀氧化硅通常采用氢氟酸(HF)为主要化学载体。为了提高选择性,工艺中采用氟化铵缓冲的稀氢氟酸。为了保持pH值稳定,可以加入少量的强酸或其他元素。掺杂的氧化硅比纯氧化硅更容易腐蚀。湿法化学剥离(WetRemoval)主要是为了去除光刻胶和硬掩模(氮化硅)。热磷酸(H3PO4)是湿法化学剥离去除氮化硅的主要化学液,对于氧化硅有较好的选择比。在进行这类化学剥离工艺前,需要将附在表面的氧化硅用HF酸进行预处理,以便将氮化硅均匀地消除掉。高效光刻解决方案对于降低成本至关重要。江苏光刻技术

从对准信号上分,主要包括标记的显微图像对准、基于光强信息的对准和基于相位信息对准。对准法则是光刻只是把掩膜版上的Y轴与晶园上的平边成90º,如图所示。接下来的掩膜版都用对准标记与上一层带有图形的掩膜对准。对准标记是一个特殊的图形,分布在每个芯片图形的边缘。经过光刻工艺对准标记就永远留在芯片表面,同时作为下一次对准使用。对准方法包括:a、预对准,通过硅片上的notch或者flat进行激光自动对准b、通过对准标志,位于切割槽上。另外层间对准,即套刻精度,保证图形与硅片上已经存在的图形之间的对准。湖北紫外光刻光刻机曝光时的曝光剂量的确定。

二氧化硅的湿法刻蚀通常使用HF。因为1∶1的HF(H2O中49%的HF)在室温下刻蚀氧化物速度过快,所以很难用1∶1的HF控制氧化物的刻蚀。一般用水或缓冲溶剂如氟化铵(NH4F)进一步稀释HF降低氧化物的刻蚀速率,以便控制刻蚀速率和均匀性。氧化物湿法刻蚀中所使用的溶液通常是6∶1稀释的HF缓冲溶液,或10∶1和100∶1的比例稀释后的HF水溶液。的半导体制造中,每天仍进行6∶1的缓冲二氧化硅刻蚀(BOE)和100∶1的HF刻蚀。如果监测CVD氧化层的质量,可以通过比较CVD二氧化硅的湿法刻蚀速率和热氧化法生成的二氧化硅湿法刻蚀速率,这就是所谓的湿法刻蚀速率比。热氧化之前,HF可用于预先剥除硅晶圆表面上的原生氧化层。
显影速度:显影速率主要取决于使用的光刻胶和反转烘烤步骤的时间和温度。反转烘烤的温度越高、时间越长,光引发剂的热分解率就越高。在常规显影液中,显影速率>1um/min是比较常见的,但并不是每款胶都是这样的。底切结构的形成:过显的程度(光刻胶开始显影到显影完成的时间)对底切结构的形成有明显的影响。如图3所示,在充分显影后,随着显影时间的延长,底切的程度会表现更明显。对于实际应用中,建议30%的过度显影是个比较合适的节点:在高深宽比的应用中,必须注意,过度的底切结构有可能会导致光刻胶漂胶。足够的光刻胶厚度:在使用方向性比较好的镀膜方式中,镀膜材料的厚度甚至可以大于光刻胶的厚度。因为,蒸发的材料在空隙区域上缓慢地生长在一起,从而衬底上生长的材料形成一个下面大上面小的梯形截面结构。光刻对准技术是曝光前一个重要步骤作为光刻的三大主要技术之一。

基于光刻工艺的微纳加工技术主要包含以下过程:掩模(mask)制备、图形形成及转移(涂胶、曝光、显影)、薄膜沉积、刻蚀、外延生长、氧化和掺杂等。在基片表面涂覆一层某种光敏介质的薄膜(抗蚀胶),曝光系统把掩模板的图形投射在(抗蚀胶)薄膜上,光(光子)的曝光过程是通过光化学作用使抗蚀胶发生光化学作用,形成微细图形的潜像,再通过显影过程使剩余的抗蚀胶层转变成具有微细图形的窗口,后续基于抗蚀胶图案进行镀膜、刻蚀等可进一步制作所需微纳结构或器件。氧等离子普遍用于光刻胶去除。湖北紫外光刻
光刻间的照明光为黄光。江苏光刻技术
第三代为扫描投影式光刻机。中间掩模版上的版图通过光学透镜成像在基片表面,有效地提高了成像质量,投影光学透镜可以是1∶1,但大多数采用精密缩小分步重复曝光的方式(如1∶10,1∶5,1∶4)。IC版图面积受限于光源面积和光学透镜成像面积。光学曝光分辨率增强等光刻技术的突破,把光刻技术推进到深亚微米及百纳米级。第四代为步进式扫描投影光刻机。以扫描的方式实现曝光,采用193nm的KrF准分子激光光源,分步重复曝光,将芯片的工艺节点提升一个台阶。实现了跨越式发展,将工艺推进至180~130nm。随着浸入式等光刻技术的发展,光刻推进至几十纳米级。第五代为EUV光刻机。采用波长为13.5nm的激光等离子体光源作为光刻曝光光源。即使其波长是193nm的1/14,几乎逼近物理学、材料学以及精密制造的极限。江苏光刻技术