户外用品需兼顾轻量化与耐用性,泽信新材料通过 MIM 技术与材料选择,实现两者平衡。公司选用铝合金粉末(密度 2.7g/cm³)或钛合金粉末(密度 4.5g/cm³),经 MIM 工艺制成的户外用品零部件(如登山扣、露营装备连接件),较传统钢质零部件减重 30%-50%,满足户外用品轻量化需求;同时通过优化烧结工艺,零部件致密度达 96% 以上,抗拉强度达 300-800MPa,满足户外使用的强度要求。例如登山扣零部件,泽信新材料采用 6061 铝合金粉末,经 MIM 工艺制成后,重量 20g,较钢质登山扣(40g)减重 50%,抗拉强度达 350MPa,承重测试中可承受 20kN 拉力无断裂,完全符合 UIAA(国际登山联合会)标准。异形复杂零部件的检测需依赖激光扫描与逆向工程,构建高精度三维模型。南昌户外用品零部件代加工

泽信新材料主营的铁基料与不锈钢零部件,在性能与应用场景上各有优势,公司为客户提供专业选型建议。铁基料零部件以低合金强度铁粉为原料,经 MIM 工艺制成后,抗拉强度 600-800MPa,硬度 HRC 25-30,成本较不锈钢低 20%-30%,适配对成本敏感、无强腐蚀需求的场景(如机械传动系统、电动工具);通过渗碳、淬火等热处理,铁基料零部件表面硬度可提升至 HRC 55-60,耐磨性明显增强,适用于齿轮、轴类等传动零件。不锈钢零部件以 304、316L 不锈钢粉末为原料,304 不锈钢零部件抗拉强度 500-600MPa,耐腐蚀性中等,适用于轻度潮湿环境(如家电内部零件);316L 不锈钢含钼元素,耐腐蚀性优异,抗拉强度 550-650MPa,适用于户外、医疗、食品等强腐蚀或高洁净需求场景(如户外用品、医疗器械),但成本较铁基料高 30%-40%。济南五金工具零部件设计针对异形复杂零部件,我们采用了先进的仿真技术进行优化,提升了设计效率。

风电传感器支架,通过增加加强筋厚度(从 2mm 增至 3mm),减少振动应力集中,应力最大值从 150MPa 降至 80MPa,低于材料屈服强度(250MPa);电缆夹设计为弧形结构,增加与电缆的接触面积,减少振动导致的电缆磨损。生产过程中,公司严格控制零部件致密度(≥96%),减少内部孔隙,提升抗疲劳性能,经振动疲劳测试(1000 万次循环),零部件无裂纹产生,疲劳寿命满足风电设备 20 年使用寿命要求。目前该类抗振动零部件已应用于陆上与海上风电项目,客户反馈在风力发电设备运行中,零部件故障率低于 0.03%,完全符合风电行业高可靠性需求,泽信新材料可根据风电设备的振动参数,定制零部件抗振动方案,助力风电企业提升设备稳定性。
选型时,泽信新材料技术团队会根据客户使用环境(湿度、腐蚀性)、受力情况(负载、冲击)、成本预算提供建议:例如电动工具齿轮承受高频冲击与磨损,推荐渗碳处理的铁基料零部件;户外露营装备连接件需耐风雨侵蚀,推荐 316L 不锈钢零部件;家电内部电机端盖无腐蚀风险,推荐成本较低的铁基料或 304 不锈钢零部件。公司可提供两种材质的样品进行测试,协助客户验证性能,同时提供成本分析报告,帮助客户在性能与成本间找到平衡,目前两种材质零部件均已实现规模化生产,小订单量可低至 500 件,满足客户小批量测试与大批量生产需求。钢尺的刻度零部件,保证测量数据的准确性。

电动工具零部件需承受高频冲击与持续负载,泽信新材料通过 MIM 技术优化零部件结构与材料性能,提升动力传输效率。公司选用高韧性铁基合金(含碳 0.6%、钒 0.2%),经 MIM 工艺制成的电动工具齿轮、传动轴,冲击韧性达 18J/cm²,在高频冲击工况下(冲击频率 10 次 / 秒),无断裂现象;通过渗碳处理,零部件表面硬度达 HRC 58-62,芯部硬度 HRC 30-35,实现 “外硬内韧” 的性能特点,耐磨性与抗冲击性平衡。结构设计上,泽信新材料针对电动工具的动力传输需求,优化齿轮齿形(采用渐开线齿形,压力角 20°),减少传动噪音,同时通过 MIM 工艺一体成型齿轮与轴体,减少装配间隙,动力传输效率提升至 97% 以上,较传统组装结构提升 5%。生产过程中,公司通过严格的过程控制,确保零部件尺寸一致性,例如电动工具齿轮的齿距累积误差≤0.02mm,齿圈径向跳动≤0.01mm,确保多齿轮啮合顺畅。目前该类电动工具零部件已应用于电钻、电锯、角磨机等产品,经测试在额定负载下连续运行 200 小时,零部件磨损量≤0.01mm,动力传输稳定,泽信新材料可根据电动工具功率、转速需求,定制零部件参数,交付周期控制在 15-20 天,满足电动工具企业快速生产需求。气动工具的气缸零部件,为其提供强大的动力支持。南昌户外用品零部件代加工
这款异形复杂零部件的轻量化设计,减轻了整体重量,提升了装备的灵活性。南昌户外用品零部件代加工
汽车行业对零部件的轻量化、高的强度和耐腐蚀性要求严苛,MIM技术通过材料创新与工艺优化,成为燃油车与新能源汽车的关键制造手段。在燃油车领域,MIM主要用于制造变速箱同步器齿环、涡轮增压器叶轮、安全气囊气体发生器外壳等部件:同步器齿环需承受高频摩擦与冲击载荷,MIM制造的铜基粉末冶金齿环通过添加0.5%的石墨增强自润滑性,可将磨损率降低60%,寿命延长至50万公里以上;涡轮增压器叶轮需在800℃高温下保持高的强度(抗拉强度>800MPa),MIM通过控制镍基合金粉末的氧含量(<100ppm)与烧结气氛(氢气还原),可避免高温氧化导致的性能衰减。在新能源汽车领域,MIM技术聚焦于电机、电池与电控系统的关键部件:电机转子铁芯需同时满足高导磁率(>1.5T)与低涡流损耗,MIM制造的硅钢片叠层结构通过优化粘结剂配方,可将层间绝缘电阻提升至100MΩ以上,效率较传统冲压件提高2%-3%;电池包连接片需承受大电流(>300A)与振动冲击,MIM制造的铜铝复合连接片通过共注射成型技术实现金属界面的冶金结合,接触电阻降低至5μΩ以下,明显提升能量传输效率。随着汽车行业向电动化、智能化转型,MIM技术正从传统动力系统向智能驾驶传感器、轻量化底盘等新兴领域拓展。南昌户外用品零部件代加工