电化学储能系统由包括直流侧和交流侧两大部分。直流侧为电池仓,包括电池、温控、消防、汇流柜、集装箱等设备,交流侧为电器仓,包括储能变流器、变压器、集装箱等。储能系统与电网的电能交互,是通过PCS变流器进行交直流转换实现的。
一、储能系统分类按电气结构划分,大型储能系统可以划分为:
(1)集中式:低压大功率升压式集中并网储能系统,电池多簇并联后与PCS相连,PCS追求大功率、高效率,目前在推广1500V的方案。
(2)分布式:低压小功率分布式升压并网储能系统,每一簇电池都与一个PCS单元连接,PCS采用小功率、分布式布置。
(3)智能组串式:基于分布式储能系统架构,采用电池模组级能量优化、电池单簇能量控制、数字智能化管理、全模块化设计等创新技术,实现储能系统更高效应用。
(4)高压级联式大功率储能系统:电池单簇逆变,不经变压器,直接接入6/10/35kv以上电压等级电网。单台容量可达到5MW/10MWh。
(5)集散式:直流侧多分支并联,在电池簇出口增加DC/DC变换器将电池簇进行隔离,DC/DC变换器汇集后接入集中式PCS直流侧。 这些设备可以通过无线网络或有线连接与监控中心进行数据传输和远程监控。云南电站检测电站现场并网检测设备供应商

光伏电站的设备运维管理
1.制定设备管理人员和设备管理机制首先,要明确备品备件采购及管理工作。备品备件是保证稳定生产、提高设备技术效益及时消除设备缺陷的重要保障。能有效缩短设备停运及维修时间,确保设备安全可靠稳定的运行。是降低因中断生产而造成损失的有效措施。其次,要完善设备维护及检修制度。应根据国家相关法律、法规及现行的行业规程、规范,结合电站实际生产运行情况,组织厂家及电站技术人员编制《电站设备维护、检修手册》《电站设备管理规范》等。对相关设备管理人员进行培训。通过定期人员培训,使员工了解掌握设备的技术状况及在运用中的变化规律,保证设备有良好的技术状况;提升员工运维能力,提高设备维护检修水平。
2.健全管理模式要做到健全管理模式,首先要打造一支专业的电站管理队伍。通过对电站管理人员的管理素质培训,不断提升管理者的经营意识。相关管理人员应能够随时了解关注国家政策,努力实现效益比较大化。与此同时,要根据当地实际情况,合理分配用电负荷,既能满足用电需求,又不良费电力资源,实现利用率比较大化。电站管理队伍应由专职人员组成,这些人员应懂得光伏发电原理、日常设备保养维护、事故故障分析排查等相关知识。 广东电网模拟装置电站现场并网检测设备加工这种电站现场并网检测设备能够准确捕捉电站并网过程中的数据变化和参数波动。

光伏电站的运维人员配置通常根据电站容量来确定,一般按照10MW配置1.2~1.5个运维员,比较低不低于4人,并采用两班倒制度。
在人员配备方面,一个电站通常包括站长1人、副站长1人、值长2~4人、电气专工和普通运维人员。所有人员需要获得特种作业证(高压电工)和调度颁发的运维证书。对于运维人员的介入时间,比较好时机是在电站建设期间开始进行电气调试。
在这个阶段,运维人员可以跟随厂家和调试单位的工程师一起参与各电力设备的调试工作,熟悉电站电力设备的配置情况,并对设备材料和安装质量进行了解和检查。尤其要注意监控后台的调试,期间与厂家沟通监控后台的制作细节,以便今后的使用。
同时,对电站内的通讯线路要及时要求调试单位或自己做好标签,以方便后期设备维护工作。通过在调试期间的介入,可以更好地了解电站的情况,为今后接手运维工作做好准备。
储能电站的设计
1.1系统构成储能电站由退役动力电池、储能PCS(变流器)、BMS(电池管理系统)、EMS(能源管理系统)等组成,为了体现储能电站的异构兼容特征,电站选用5种不同类型、结构、时期的退役动力电池进行储能为实现储能电站的控制,需要电站中各设备间进行有效的配合与数据通信,电站数据通信网络拓扑结构分3层,分别为现场应用层、数据控制层和数据调度层,系统中现场应用层主要是对PCS和BMS等数据监测与控制,系统网络拓扑结构如图1所示。
PCS是直流电池和交流电网连接的中间环节[8],是系统能量传递和功率控制的中枢,PCS采用模块化设计,每个回路的PCS都可调节。系统并网时,PCS以电流源形式注入电网,自钳位跟踪电网相位角度;系统离网时,以电压源方式运行,输出恒定电压和频率供负载使用,各回路主电路拓扑结构。
BMS具备电池参数监测(如总电流、单体电压检测等)、电池状态估计和保护等;数据控制层嵌入了系统针对不同类型、结构、时期的动力电池控制策略,实现系统充放电功率均衡。数据监控层即EMS,主要实现储能电站现场设备中各种状态数据的采集和控制指令的发送、数据分析和事故追忆。 设备支持远程诊断和维护,减少人工巡检和维护的成本和工作量。

为保证设备的长期稳定运行,定期维护与保养至关重要。
应定期对设备的外观进行清洁,去除灰尘、污垢等,特别是散热风扇、通风口等部位,以确保良好的散热效果。对内部的电气部件,如电路板、继电器等,要定期检查是否有松动、氧化等现象,如有问题及时处理。同时,设备的软件系统也需要定期升级,以修复可能存在的漏洞并增加新的功能。
在故障排查方面,要建立完善的故障诊断机制,当设备出现故障时,可根据故障代码、指示灯状态等快速定位故障点。例如,如果设备显示电压测量异常,可先检查电压传感器是否损坏,再检查相关的信号处理电路,通过逐步排查确定故障原因并进行修复,确保设备能及时恢复正常运行。 设备具备丰富的历史数据记录功能,可用于事后故障分析和预防措施制定。河北大功率电站现场并网检测设备加工
设备能够检测到电网波动、短时停电等异常情况,并及时与电网断开连接以防止损坏。云南电站检测电站现场并网检测设备供应商
储能集成技术路线:
拓扑方案逐渐迭代
(1)集中式方案:1500V取代1000V成为趋势随着集中式风光电站和储能向更大容量发展,直流高压成为降本增效的主要技术方案,直流侧电压提升到1500V的储能系统逐渐成为趋势。相比于传统1000V系统,1500V系统将线缆、BMS硬件模块、PCS等部件的耐压从不超过1000V提高到不超过1500V。储能系统1500V技术方案来源于光伏系统,根据CPIA统计,2021年国内光伏系统中直流电压等级为1500V的市场占比约49.4%,预期未来会逐步提高至近80%。1500V的储能系统将有利于提高与光伏系统的适配度。1500V储能系统方案对比1000V方案在性能方面亦有提升。
以阳光电源的方案为例,与1000V系统相比,电池系统能量密度与功率密度均提升了35%以上,相同容量电站,设备更少,电池系统、PCS、BMS及线缆等设备成本大幅降低,基建和土地投资成本也同步减少。据测算,相较传统方案,1500V储能系统初始投资成本就降低了10%以上。但同时,1500V储能系统电压升高后电池串联数量增加,其一致性控制难度增大,直流拉弧风险预防保护以及电气绝缘设计等要求也更高。 云南电站检测电站现场并网检测设备供应商