需要说明的是,本发明剥离液中,推荐*由上述成分构成,但只要不阻碍本发明的效果,可以含有例如聚氧化烯烷基醚系、硅系的消泡剂等其它成分。以上说明的本发明剥离液可以通过将上述成分溶于水中来制备。需要说明的是,本发明剥离液的ph若为碱性则没有特别限定,但通常**将上述成分溶于水就成为碱性,因此没有特别必要调整ph。另外,本发明剥离液可以通过将上述成分分别分开预先溶于水,成为抗蚀剂的剥离液套件,将它们混合来制备。具体来说,可以举出以包含含有钾盐的第1液和含有溶纤剂的第2液为特征的抗蚀剂的剥离液套件、其中还包含含有硅酸盐的第3液的抗蚀剂的剥离液套件、进而在其中使上述其它成分适当含有于各液中的抗蚀剂的剥离液套件等。通过使用本发明剥离液对施加有抗蚀剂的基材进行处理,抗蚀剂被细小地粉碎。苏州性价比高的剥离液。江苏BOE蚀刻液剥离液供应

随着国内电子制造产业和光电产业的迅速发展,光刻胶剥离液等电子化学品的使用量也大为増加。特别是纵观近几年度的光电行业,风靡全球的智能手持设备、移动终端等简直成为了光电行业的风向标:与之相关的光电领域得到了飞速的发展,镜头模组、滤光片、LTPS液晶显示面板、触摸屏幕、传感器件等等。而光电行业的其他领域,虽然也有增长,但是远不及与智能手持设备相关的光电领域。工业上所使用的剥离液主要是有机胺和极性有机溶剂的组合物,通过溶胀和溶解方式剥离除去光刻胶。上述有机胺可包括单乙醇胺(MEA),二甲基乙酰胺(DMAC),N-甲基甲酰胺(NMF),N-甲基ニ乙醇胺(MDEA)等。上述极性有机溶剂可包括二乙二醇甲醚(DGME),二乙二醇单丁醚(BDG),二甲亚砜(DMS0),羟乙基哌嗪(NEP)等。由于LCD液晶屏具有体积小、质量轻、清晰度高、图像色彩好等优点,被广泛应用于工业生产中,按目前使用的液晶电视、电脑显示屏等生命周期为6-8年计算,未来随着年代的更替,LCD的生产量液将会增加,从而导致剥离液的使用量也大量增加,剥离液大量使用的同时也产生大量剥离液废液。剥离液废液中除了含有少量高分子树脂和光敏剂外。江苏BOE蚀刻液剥离液供应好的剥离液的标准是什么。

所述抽真空气体修饰法包括如下步骤:将将衬底和光刻胶抗粘剂置于密闭空间中,对密闭空间抽真空至光刻胶抗粘层气化,保持1分钟以上,直接取出衬底。进一步的改进,所述衬底为硅、氧化硅、石英、玻璃、氮化硅、碳化硅、铌酸锂、金刚石、蓝宝石或ito制成。进一步的改进,所述步骤(2)对衬底修饰的试剂包括hmds和十三氟正辛基硅烷;对衬底修饰的试剂镀在衬底表面。进一步的改进,所述所述光刻胶包括pmma,zep,瑞红胶,az胶,纳米压印胶和光固化胶。进一步的改进,所述光刻胶厚度为1nm-100mm进一步的改进,所述光刻胶上加工出所需结构的轮廓的方法为电子束曝光,离子束曝光,聚焦离子束曝光,重离子曝光,x射线曝光,等离子体刻蚀,紫外光刻,极紫外光刻,激光直写或纳米压印。进一步的改进,所述黏贴层为pdms,紫外固化胶,热释放胶,高温胶带,普通胶带,pva,纤维素或ab胶。上述选择性剥离光刻胶制备微纳结构的方法制备的微纳结构用于微纳制造,光学领域,电学,生物领域,mems领域,nems领域。本发明的有益效果在于,解决了现有负性光刻胶加工效率低,难于去胶,去胶过程中损伤衬底,对于跨尺度结构的加工过程中加工精度和效率的矛盾等问题。
图3是一现有技术光刻胶剥离去除示意图二,其离子注入步骤。图4是一现有技术光刻胶剥离去除示意图三,其显示离子注入后光刻胶形成了主要光刻胶层和第二光刻胶层。图5是一现有技术光刻胶剥离去除示意图四,其显示光刻胶膨胀。图6是一现有技术光刻胶剥离去除示意图五,其显示光刻胶炸裂到临近光刻胶。图7是一现有技术光刻胶剥离去除示意图六,其显示光刻胶去除残留。图8是本发明光刻胶剥离去除示意图一,其显示首先剥离去除主要光刻胶层。图9是本发明光刻胶剥离去除示意图二,其显示逐步剥离去除第二光刻胶层的中间过程。图10是本发明光刻胶剥离去除示意图三,其显示完全去除光刻胶后的衬底。图11是采用现有技术剥离去除光刻胶残留缺陷示意图。图12是采用本发明剥离去除光刻胶残留缺陷示意图。具体实施方式以下通过特定的具体实施例说明本发明的实施方式,本领域技术人员可由本说明书所公开的内容充分地了解本发明的其他优点与技术效果。本发明还可以通过不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点加以应用,在没有背离发明总的设计思路下进行各种修饰或改变。需说明的是,在不的情况下,以下实施例及实施例中的特征可以相互组合。剥离液中加入添加剂可保护金属层;

含有的胺化合物的质量分为:1%-2%。进一步技术方案中,所述的添加剂中含有醇醚化合物的质量分为:30%-50%;含有胺化合物的质量分为:35%-55%;含有缓蚀剂的质量分为:6%-12%;含有润湿剂的质量分为:1%-7%。进一步技术方案中,所述的步骤s1中剥离液废液所含的酰胺化合物以及步骤s2中添加剂所含的酰胺化合物均为n-甲基甲酰胺(nmf)、n-甲基乙酰胺、n,n-二甲基甲酰胺中的一种或者多种。进一步技术方案中,所述的步骤s1中剥离液废液所含的醇醚化合物以及步骤s2中添加剂所含的醇醚化合物均为二乙二醇丁醚(bdg)、二乙二醇甲醚、乙二醇甲醚、乙二醇乙醚中的一种或多种。进一步技术方案中,所述的步骤s1中剥离液废液所含的胺化合物以及步骤s2中添加剂所含的胺化合物为环胺与链胺。进一步技术方案中,所述的环胺为氨乙基哌嗪、羟乙基哌嗪、氨乙基吗啉中的一种或多种;所述的链胺为乙醇胺、二乙醇胺、三乙醇胺、二甘醇胺、异丙醇胺、甲基二乙醇胺、amp-95中的一种或多种。进一步技术方案中,所述的三唑类化合物,具体为苯并三氮唑(bta)、甲基苯并三氮唑(tta)中的任意一种。进一步技术方案中,所述的润湿剂为含羟基化合物,具体为为聚乙二醇、甘油中的任意一种。剥离液的主要成分是什么?东莞江化微的蚀刻液剥离液什么价格
ITO剥离液的配方是什么?江苏BOE蚀刻液剥离液供应
本发明采用一种选择性剥离制备微纳结构的新方法,可制备出任意负性光刻胶所能制备的任意图形且加工效率比传统的加工方法提高了上万倍(以直径为105nm的结构为例),特别是为跨尺度结构的加工,为光学领域,电学领域,声学领域,生物领域,mem制造,nems制造,集成电路等领域提供了一种新的解决方案。本发明的技术方案如下:一种选择性剥离光刻胶制备微纳结构的方法,包括以下步骤:步骤一、提供衬底,并清洗;步骤二、对衬底进行修饰降低光刻胶与衬底的粘附力;步骤三、衬底上旋涂光刻胶得到薄膜;步骤四、在光刻胶上加工出所需结构的轮廓;所述所需结构包括若干**单元,**单元外周形成有闭合的缝隙;步骤五、在光刻胶上覆盖一层黏贴层;步骤六、自所需结构以外的光刻胶的边沿处揭开黏贴层,黏贴层将所需结构以外的光刻胶粘走,留下所需结构即衬底上留下的微纳结构;黏贴层与光刻胶的粘附力a大于光刻胶与衬底的粘附力b。进一步的改进,在供体衬底表面修饰光刻胶抗粘层为高温气体修饰法或抽真空气体修饰法;高温气体修饰法包括如下步骤:将衬底和光刻胶抗粘剂置于密闭空间中,其中,密闭空间的温度控制在60℃-800℃之间,保温1分钟以上,直接取出衬底。江苏BOE蚀刻液剥离液供应