博厚新材料推出的小批量定制服务(起订量 50kg起),满足研发机构与中小企业的创新需求。服务流程包括:①5kg 打样(3 个工作日完成);②SEM、XRD 等表征分析(提供详细检测报告);③工艺参数建议(如针对高校研发的新型镍基合金粉末,提供激光熔覆的功率 - 速度匹配方案)。某新材料研究院使用该服务开发的 Ni-Cr-W-C 基自熔合金粉末,通过 20 轮小批量优化,使涂层在 650℃的高温磨损量降低 50%,该成果已转化为商业化产品,年销售额达 500 万元。此外,定制服务支持成分微调和粒度窄分布控制(跨度≤1.0),例如为某单位定制的 D50=20μm 的超细粉末,满足了微机电系统(MEMS)的精密涂层需求,体现了 “小批量、高精度” 的服务特色。作为国家高新技术企业,湖南博厚新材料研发的镍基自熔合金粉末填补了国内多项技术空白。闸板镍基自熔合金粉末性价比

湖南博厚新材料 BH-NiCrBSiRe 粉末通过添加 1% 稀土元素 Re,提升高温抗氧化性能,适用于燃气轮机等极端高温场景。Re 元素在氧化过程中富集于晶界,抑制 Cr₂O₃氧化膜的柱状晶生长,促使其形成等轴晶结构,降低氧化膜内应力,同时减少氧在基体中的扩散系数。800℃氧化实验显示,该粉末涂层的氧化增重率≤0.3mg/cm²/100h,而未添加 Re 的涂层增重率达 1.0mg/cm²/100h。某航发维修单位使用该粉末修复燃气轮机火焰筒,经 1000 小时台架试车(温度 850-950℃),涂层未出现剥落,氧化膜厚度≤3μm,且 Re 的添加未降低涂层的耐磨性(硬度仍达 HRC60),实现了高温抗氧化与耐磨性能的协同优化,填补了国内稀土强化镍基涂层的技术空白。不开裂镍基自熔合金粉末供应商博厚新材料 BH-NiCrBSiRe 粉末添加 1% Re,高温抗氧化性能增强,适用于燃气轮机部件。

博厚新材料镍基自熔合金粉末的烧结致密化率≥99%,这得益于其球形度高、粒度均匀的物理特性,以及 B、Si 元素形成的低熔点液相促进烧结致密化。在热等静压(HIP)工艺中,该粉末在 1100℃/100MPa 条件下烧结 2 小时,孔隙率可降至 0.5% 以下,涂层的抗拉强度达 750MPa,延伸率 8%,满足重载工况需求。某工程机械企业使用该粉末制备的液压支架立柱涂层,在 200MPa 工作压力下循环 10 万次未出现剥落,而常规粉末涂层能承受 5 万次循环,证明了高致密化率对提升涂层可靠性的重要性。
博厚新材料借助 ANSYS 有限元分析软件,构建了高精度的粉末 - 基体热匹配模型,通过多物理场耦合仿真技术,模拟涂层在不同工况下的热应力分布。在 Ni-Cr-B-Si 体系粉末研发中,技术团队以 45# 钢基体(热膨胀系数 11.5×10⁻⁶/℃)为基准,通过 ANSYS 模拟不同 Cr 含量(12%、14%、16%)对涂层热膨胀系数的影响,发现当 Cr 含量优化至 16% 时,粉末涂层的热膨胀系数稳定在 12.5×10⁻⁶/℃,与基体的匹配度达 98.3%,热应力集中区域减少 70%。进一步通过 ANSYS 后处理分析显示,优化后的涂层在循环过程中热应力为 180MPa,低于材料的屈服强度(240MPa),而未优化涂层的热应力达 320MPa,超出屈服强度导致失效。这种的热匹配优化技术,较大程度地提升了涂层寿命。目前该模型已拓展至钛合金、铝合金等多种基体材料,为航空航天、新能源等领域的异种材料连接提供了数据支撑,使博厚新材料的涂层方案在复杂热循环工况下的可靠性提升 3 倍以上。博厚新材料为客户建立专属材料档案,持续优化粉末性能以匹配工况变化。

博厚新材料研发的 BH-NiAlBSi 粉末通过调整 Al 含量(8-10%),使热膨胀系数(11.5×10⁻⁶/℃)与钛合金基体(10.5×10⁻⁶/℃)高度匹配,专门解决异种材料连接的热应力难题。粉末中的 Al 元素形成 Ni₃Al 金属间化合物,在降低热膨胀系数的同时,通过扩散焊接与钛合金基体形成过渡层(厚度 5-10μm),经 300℃热循环(20-300℃,1000 次)测试,涂层应变力≤50MPa,远低于材料的屈服强度。某航空企业采用该粉末作为钛合金与不锈钢的连接涂层,在发动机压气机部件中,经历 - 50℃至 200℃的温度交变,未出现界面开裂,且结合强度≥40MPa,满足航空级可靠性要求。粉末的热匹配设计还适用于钛合金与陶瓷、钛合金与铜等异种材料连接,拓宽了镍基涂层的应用边界。博厚新材料为能源行业定制的镍基自熔合金粉末,适用于燃煤电厂的磨煤机部件防护。超音速喷涂镍基自熔合金粉末质检
博厚新材料镍基自熔合金粉末帮助客户降低设备维护成本,涂层寿命延长 2-5 倍。闸板镍基自熔合金粉末性价比
博厚新材料的纳米晶镍基自熔合金粉末通过控制雾化冷却速率(≥10⁵℃/s),使晶粒尺寸≤100nm,较传统微米晶粉末的耐磨性提升 60%。纳米晶结构通过 “晶界强化” 与 “位错阻碍” 双重机制提升耐磨性:晶界数量随晶粒细化呈指数增加,阻碍磨粒切削路径,同时纳米晶界的无序结构使位错滑移距离缩短,塑性变形阻力增大。磨损实验(干砂 - 橡胶轮法)显示,该粉末涂层的磨损量为 0.03g/1000 转,而微米晶涂层为 0.075g/1000 转。某轴承厂使用该粉末喷涂的滚道,在高速旋转(1500 转 / 分钟)与重载荷(2000N)下,疲劳寿命达 1200 小时,较传统涂层提升 2.5 倍,且电镜下观察到的磨痕深度≤0.5μm,证明纳米晶结构对磨损的抑制作用,适用于高精度、高耐磨的轴承、齿轮等部件。闸板镍基自熔合金粉末性价比