控制系统的实现是以硬件电路为基础。第一步是硬件电路的设计和焊接、调试。前面章节已经介绍控制电路板主要包括电源模块、采样及A/D转换模块、DSP控制模块、PWM输出模块、驱动电路模块。本文的控制电路设计软件是PADS,对各个模块设计、布线完成后将图纸发送至厂家,生产出PCB板后,焊接、调试控制板硬件电路。除了驱动模块外,将其他 4 个模块集成在一个控制板上,四个模块组合实现数 字控制的功能,在调试过程中可以分开调试。如焊制电路板时须首先调制电源模块, 保证整个控制板上各个点的电压正常,否则可能导致控制板上元件烧毁。通过电流传感器,可以有效防止过载和短路现象的发生。宁波闭环电流传感器价钱
电流传感器可以根据不同的工作原理和应用场景进行分类。常见的分类方式包括:基于电磁感应的传感器、霍尔效应传感器和分流电阻传感器。电磁感应传感器利用电流通过导体时产生的磁场来测量电流,具有非接触测量的优点,适合高电流的测量。霍尔效应传感器则通过测量导体中电流产生的霍尔电压来确定电流大小,具有较高的精度和响应速度。分流电阻传感器则通过在电路中串联一个已知阻值的电阻来测量电流,适合低电流的测量,但会引入一定的功耗。不同类型的电流传感器在选择时需要根据具体的应用需求、测量范围和精度要求进行综合考虑。河北电池电流传感器厂家现货在电力系统中,电流传感器是保护设备的重要组成部分。
输出端*采用了电容滤波,输出纹波系数在2%左右。调节PI参数可以进一步小范围降低纹波系数,但受到电压传感器的精度限制,纹波系数暂时不能达到仿真电路中的水平。输出端电压纹波系数除了与实验本身元器件的选用有关外,也与程序计算方法有关。如改变PID环节的参数值,就使系统失去稳定。所以从反方面讲可以通过改变程序的计算方法改善波形。整个实验系统初步完成了搭建和调试,并且所得的实验数据和波形与仿真电路中的数据和波形基本保持一致,实验方案的可行性进一步得到了验证。
超前桥臂上开关管的零开通比较容易实现。如图5-10所示通道二为超前桥臂上开关管的驱动波形,通道一为开关管上的电压波形,通道二为开关管端电压波形。可以观测到在开关管被触发导通前开关管端电压已经变为0,所以实现了零开通,零开通的时间裕度约为1.8us。如图5-11所示通道二为滞后桥臂上开关管的驱动波形,通道三为开关管上的电压波形,通道四为开关管端电压波形。可以观测到在开关管被触发导通前开关管端电压已经变为0。滞后桥臂上开关管也实现了零开通,但零开通的时间裕度小于超前桥臂的时间裕度。电流传感器的技术发展推动了智能家居的普及。
在确定了PID的数字化实施方案后,接下来主要问题是整定PID系统的参数。按照一般步骤:1)确定比例增益KP:在确定KP时一般首先去掉积分项和微分项,使得PID为纯比例环节,给定一个系统允许范围内的输入值,由0逐渐增大比例增益,知道系统出现振荡,然后再反过来减小比例增益的值。记录下**大值,然后取**大值的0.7倍作为比例增益的暂定值,继续进行下一步的参数调试。确定积分环节系数KI和Ki:2)比例积分增益值确定后,设定一个较大的积分时间常数,相当于设定较小的KI的值,其他的Ki的数值也设定较小值,然后逐步增大KI的值,知道系统出现振荡为止。同理,在反向进行直到系统振荡消失。记录KI的**大值,然后取**大值的0.7倍作为积分环节系数KI的暂定值。此处每个另一组系数Ki相当于是加权比例,一般离当下时刻**近的状态是我们**关注的,所以设置参数时会取值k1>k2>…>kn。控制电路的设计和制作。嘉兴循环测试电流传感器
采用电流传感器,可以实现对电力消耗的精确计量。宁波闭环电流传感器价钱
电流传感器是一种用于测量电流的设备,广泛应用于电力系统、工业自动化、家用电器等领域。其主要功能是实时监测电流的大小和方向,从而帮助用户了解电流的变化情况。电流传感器的工作原理通常基于电磁感应或霍尔效应。通过将电流信号转换为可测量的电压信号,电流传感器能够提供精确的电流读数。随着科技的发展,电流传感器的种类也日益丰富,包括分流器、霍尔效应传感器、光纤传感器等,每种传感器都有其独特的优缺点和适用场景。宁波闭环电流传感器价钱