博厚新材料为燃煤电厂磨煤机部件定制的镍基自熔合金粉末,通过抗高温磨损与抗煤灰腐蚀的复合性能设计,解决了磨煤机高耗能与高维护问题。该粉末采用 Ni-Cr-B-Si-Mn 体系(Mn 3%),经等离子堆焊形成的涂层,在 300℃煤灰(含 SiO₂ 50%、Al₂O₃ 25%)冲刷下,磨损率为 1.2×10⁻⁶mm³/N・m,较传统高铬铸铁提升 3 倍。某电厂 300MW 机组使用该粉末喷涂的磨煤机磨辊,运行 8000 小时后涂层厚度损失≤0.5mm,而未涂层磨辊能维持 2000 小时,且涂层表面在电镜下观察到的磨粒切削痕迹深度≤1μm,证明其优异的抗冲刷能力。此外,粉末中的 Cr 元素形成致密 Cr₂O₃氧化膜,抵抗煤灰中的 SO₂腐蚀,年腐蚀速率≤0.01mm,远低于行业平均水平。镍基自熔合金粉末的涂层结合强度≥40MPa,可满足重载工况下的可靠性要求。层流轧道镍基自熔合金粉末供应商家

博厚新材料镍基自熔合金粉末在凝固过程中,通过控制冷却速率(≥10⁴℃/s)促进碳化物均匀析出,SEM 观察显示其碳化物尺寸主要分布在 2-5μm,呈弥散状分布于 γ-Ni 基体中,这种显微组织使涂层硬度达 HRC62-64(GB/T 230.1-2018 测试)。在磨粒磨损实验中(采用 120 目石英砂,入射角 60°),该涂层的磨损率为 2.3×10⁻⁶mm³/N・m,较常规镍基涂层降低 60%。其耐磨机制为:细小均匀的碳化物作为硬质点抵抗磨粒切削,而韧性的 Ni 基体提供支撑,形成 “硬质点 - 韧性基体” 协同抗磨体系,有效应对矿山、建材等行业的强磨损工况。不开裂镍基自熔合金粉末检测博厚新材料的镍基自熔合金粉末已通过大型企业的严苛认证。

博厚新材料开发的低裂纹倾向镍基自熔合金粉末,通过优化 C、B 含量(C≤0.15%,B≤2.0%)并添加微量 Mg(0.05-0.1%),将焊接裂纹率控制在 1% 以下,解决了薄壁件修复的开裂难题。Mg 元素在熔池凝固时形成 MgO 夹杂,作为形核细化晶粒,同时降低熔渣黏度,促进气体逸出,减少气孔与裂纹源。某阀门厂使用该粉末修复 DN50 不锈钢球阀(壁厚 3mm),采用激光熔覆工艺(功率 1200W,扫描速度 8mm/s),修复后经染色探伤检测,裂纹率 0.8%,而常规镍基粉末的裂纹率达 15%。粉末的低裂纹特性还适用于复杂几何形状部件,如涡轮叶片缘板修复,可实现 0.2mm 薄边涂层的无裂纹制备,为航空、航天领域的精密修复提供了关键材料支撑。
博厚新材料镍基自熔合金粉末的物理性能经过设计:松装密度控制在 2.6-2.8g/cm³(采用 Hall flowmeter 测试),流动性≤18s/50g(ASTM B213 标准),这种参数组合使得粉末在送粉过程中具有良好的可控性。在等离子喷涂工艺中,该粉末的沉积效率达 65-70%,较常规粉末提升 15%,且喷涂过程中粉末飞散损失率≤5%。某矿山机械企业使用该粉末喷涂刮板输送机链条,单班生产效率从 800 吨 / 小时提升至 1050 吨 / 小时,同时粉末消耗量降低 18%,年材料成本节省约 35 万元。博厚新材料的镍基自熔合金粉末在激光熔覆时熔池流动性好,可实现 0.5mm 以下薄壁涂层制备。

博厚新材料镍基自熔合金粉末的烧结致密化率≥99%,这得益于其球形度高、粒度均匀的物理特性,以及 B、Si 元素形成的低熔点液相促进烧结致密化。在热等静压(HIP)工艺中,该粉末在 1100℃/100MPa 条件下烧结 2 小时,孔隙率可降至 0.5% 以下,涂层的抗拉强度达 750MPa,延伸率 8%,满足重载工况需求。某工程机械企业使用该粉末制备的液压支架立柱涂层,在 200MPa 工作压力下循环 10 万次未出现剥落,而常规粉末涂层能承受 5 万次循环,证明了高致密化率对提升涂层可靠性的重要性。博厚新材料镍基自熔合金粉末广泛应用于石油机械的泵阀、管道内壁防腐耐磨涂层。闸板镍基自熔合金粉末性能
博厚新材料镍基自熔合金粉末帮助客户降低设备维护成本,涂层寿命延长 2-5 倍。层流轧道镍基自熔合金粉末供应商家
博厚新材料借助 ANSYS 有限元分析软件,构建了高精度的粉末 - 基体热匹配模型,通过多物理场耦合仿真技术,模拟涂层在不同工况下的热应力分布。在 Ni-Cr-B-Si 体系粉末研发中,技术团队以 45# 钢基体(热膨胀系数 11.5×10⁻⁶/℃)为基准,通过 ANSYS 模拟不同 Cr 含量(12%、14%、16%)对涂层热膨胀系数的影响,发现当 Cr 含量优化至 16% 时,粉末涂层的热膨胀系数稳定在 12.5×10⁻⁶/℃,与基体的匹配度达 98.3%,热应力集中区域减少 70%。进一步通过 ANSYS 后处理分析显示,优化后的涂层在循环过程中热应力为 180MPa,低于材料的屈服强度(240MPa),而未优化涂层的热应力达 320MPa,超出屈服强度导致失效。这种的热匹配优化技术,较大程度地提升了涂层寿命。目前该模型已拓展至钛合金、铝合金等多种基体材料,为航空航天、新能源等领域的异种材料连接提供了数据支撑,使博厚新材料的涂层方案在复杂热循环工况下的可靠性提升 3 倍以上。层流轧道镍基自熔合金粉末供应商家