下游主要客户:车载领域,目前,在智能驾驶市场中,ADAS+ADS双轮驱动,激光雷达作为智能驾驶画龙点睛的产品,不可或缺。在高级辅助驾驶市场,激光雷达的成本不断下降,商业化进程有望提速,全球范围内L3级辅助驾驶量产车项目当前处于快速开发之中。世界各地交通法规的修订为L3级自动驾驶技术商业化落地带来机会。2020年6月通过的《ALKS车道自动保持系统条例》,这是全球范围内头一个针对L3级自动驾驶具有约束力的国际法规。随着激光雷达成本下探至数百美元区间且达到车规级要求,未来越来越多高级辅助驾驶量产项目将实现量产;根据Forst&Sullivan的研究报告,2021-2026E、2026E-2020E全球乘用车新车市场ADAS车辆销售CAGR有望达75.5%、30.5%,其中中国增速较高,分别为92.2%/29.3%。激光雷达的扫描模式多样,适应不同场景的需求。江西微波激光雷达

脉冲同步(PPS),脉冲同步通过同步信号线实现数据同步。GPS同步(PPS+UTC),通过同步信号线和 UTC 时间(GPS 时间)实现数据同步。然后我们从 LiDAR 硬件得到一串数据包,需要过一次驱动才能将其解析成点云通用的格式,如 ROSMSG 或者 pcl 点云格式,以目前较普遍的旋转式激光雷达的数据为例,其数据为 10hz,即 LiDAR 在 0.1s 时间内转一圈,并将硬件得到的数据按照不同角度切成不同的 packet,以下便是一个 packet 数据包定义示意图。每一个 packet 包含了当前扇区所有点的数据,包含每个点的时间戳,每个点的 xyz 数据,每个点的发射强度,每个点来自的激光发射机的 id 等信息。江西微波激光雷达农业植保依靠激光雷达辅助无人机,完成精确变量喷洒作业。

激光雷达能够准确输出障碍物的大小和距离,通过算法对点云数据的处理可以输出障碍物的3D框,如:3D行人检测、3D车辆检测等;亦可进行车道线检测、场景分割等任务。除了障碍物感知,激光雷达还可以用来制作高精度地图。地图采集过程中,激光雷达每隔一小段时间输出一帧点云数据,这些点云数据包含环境的准确三维信息,通过把这些点云数据做拼接,就可以得到该区域的高精度地图。在定位方面,智能车在行驶过程中利用当前激光雷达采集的点云数据帧和高精度地图做匹配,可以获取智能车的位置。
在三维模型重建方面,较初的研究集中于邻接关系和初始姿态均已知时的点云精配准、点云融合以及三维表面重建。在此,邻接关系用以指明哪些点云与给定的某幅点云之间具有一定的重叠区域,该关系通常通过记录每幅点云的扫描顺序得到。而初始姿态则依赖于转台标定、物体表面标记点或者人工选取对应点等方式实现。这类算法需要较多的人工干预,因而自动化程度不高。接着,研究人员转向点云邻接关系已知但初始姿态未知情况下的三维模型重建,常见方法有基于关键点匹配、基于线匹配、以及基于面匹配 等三类算法。激光雷达在环境监测中用于监测大气污染物的浓度。

为了克服探测距离的限制,FLASH激光雷达的表示厂商Ibeo、LedderTech开始在激光收发模块进行创新。车规级激光雷达鼻祖Ibeo,则一步到位推出了单光子激光雷达,Ibeo称其为Focal Plane Array焦平面,实际也可归为FlASH激光雷达。2019年8月27日,长城汽车与德国激光雷达厂商Ibeo正式签署了激光雷达技术战略合作协议,三方合作的产品基础就是ibeonEXT Generic 4D Solid State LiDAR。从长远来看,FLASH激光雷达芯片化程度高,规模化量产后大概率能拉低成本,随着技术的发展,FLASH激光雷达有望成为主流的技术方案。激光雷达助无人驾驶感知路况,让出行安全高效。天津多线激光雷达价位
览沃 Mid - 360 抗干扰能力强,室内多雷达信号混行也能稳定工作。江西微波激光雷达
而如较新的 Livox Horizon 激光雷达,也包含了多回波信息及噪点信息,格式如下:每个标记信息由1字节组成:该字节中 bit7 和 bit6 为头一组,bit5 和 bit4 为第二组,bit3 和 bit2 为第三组,bit1 和 bit0 为第四组。第二组表示的是该采样点的回波次序。由于 Livox Horizon 采用同轴光路,即使外部无被测物体,其内部的光学系统也会产生一个回波,该回波记为第 0 个回波。随后,若激光出射方向存在可被探测的物体,则较先返回系统的激光回波记为第 1 个回波,随后为第 2 个回波,以此类推。如果被探测物体距离过近(例如 1.5m),第 1 个回波将会融合到第 0 个回波里,该回波记为第 0 个回波。江西微波激光雷达