MIPI如何满足工业物联网需求
预计在未来十年中,工业物联网(IIoT)应用将大量增长,从而推动石油和天然气,食品和饮料,制药,化学,能源和采矿,半导体和制造业等流程行业以及航空航天等离散行业的生产率和效率提升。支持这种增长的新的物理网络系统的开发,将包括使用高分辨率相机来增强机器视觉,使用高分辨率显示器来实现丰富的用户界面以及用于连接传感器、执行器和其他设备的优化命令和控制界面。本文将介绍数十亿移动设备中实施的MIPI规范,如何为开发人员创建成功的设计,减少开发工作并降低许多IIoT应用成本。 信号完整性测试:检查MIPI信号传输的可靠性和稳定性,包括检测信号波形的噪声、抖动、失真等;甘肃解决方案MIPI测试

高速运行的物理层D-PHY的物理层由一个时钟和四条数据通路[D0:D3]组成,可以以非常高的速度运行。物理层可以支持不同的协议层。例如,摄像机捕捉的影像可以通过采用CSI-2协议的D-PHY物理层传送到处理器,再传送到应用处理器,然后通过采用DSI协议的D-PHY物理层传送到显示器。这里的CSI和DSI指D-PHY上运行的协议。每条通路上的数据在使用V1.2标准时传送速率可以达到2.5Gbps,在使用V2.1标准时可以达到4.5Gbps,从而可以传送高分辨率和高清晰度的影像。山东校准MIPI测试mipi测试,MIPI信号完整性测试,眼图测试,时钟抖动测试;

(3)HS信号电平判决和建立/保持时间容限(GROUP3:HS-RXVOLTAGEANDSETUP/HOLDREQUIREMENTS):其中包含了被测件对于HS信号共模电压、差分电压、单端电压、共模噪声、建立/保持时间的容限测试等。(TestIDs:2.3.1,2.3.2,2.3.3,2.3.4,2.3.5,2.3.6,2.3.7.2.3.8)
(4)HS信号时序容限测试(GROUP4:HS-RXTIMERREQUIREMENTS):其中包含了对于HS和LP间状态切换时的一系列时序参数的容限测试。(TestIDs;2.4.1,2.4.22.4.3,2.4.4,2.4.5,2.4.6,2.4.7,2.4.8,2.4.9,2.4.10,2.4.11)
D-PHY的接收端测试中,需要用到多通道的码型发生以产生多通道的D-PHY的信号,码型发生器需要在软件的控制下改变HS/LP信号的电平、偏置、注入噪声、改变时序关系等。图13.13是以Agilent公司的81250并行误码仪平台构建的一套D-PHY信号的接收容限测试系统。

MIPI M-PHY的协议解码
使用M-PHY总线的MIPI接口(如DigRFV4、LLIUniPro等)目前还是比较新的标准,很多功能还在开发过程中,用户在实际的应用过程中除了会遇到信号质量的问题外,还可能会遇到各种各样协议方面的问题。如果要对相应的协议做具体的分析和调试,需要使用的协议分析仪(如Agilent公司的DigRF协议分析仪和训练器),的协议分析仪可以有很深的内存深度,可以针对相应的协议设置多级的复杂触发,可以对不关心的数据包进行相应的过滤,因此很多芯片厂家会选择的协议分析进行协议测试。而对于很多具体的使用者来说,可能只需要简单地了解一下总线上当前的状态,能够分析示波器上当前捕获的这段波形中传输的是什么数据包以及包里的具体内容,这时候就可以考虑选择示波器里的协议解码功能。
例如基于示波器的N8807ADigRFV4协议解码软件、N8808AUniPro协议解码软件、N8809ALLI协议解码软件、N8818AUFS协议解码软件等。图14.8~图14.10是几个在示波器里进行M-PHY总线解码的例子。 数字示波器使用及MIPI-DSI信号测量;山东校准MIPI测试
MIPI CSI/DSI接口从物理层到协议层的整体测试方案;甘肃解决方案MIPI测试
MIPI-DSI接口以MIPID-PHY协议定义的物理传输层为基础,DPHY定义的物理传输层多可支持4个数据通道,1个时钟通道,每个通道在低功耗模式时以1.2V的低速信号传输,在高速模式时则采用摆幅为200毫伏的低压差分信号传输,从而相对于现有的设备表现出更高性能,更低功耗,更低EMI和更少的引脚,LCOS显示芯片是一种硅基液晶微显示技术,常用与便携式移动电子设备中,如可穿戴式设备,要求具有很低的功耗,又要具有较高的显示分辨率。因此笔者设计了一种适用于LCOS显示芯片的MIPIDSI显示驱动接口,支持的分辨率为1280*720,帧率60Hz。甘肃解决方案MIPI测试