LiDAR的结构。激光雷达主要包括激光发射、接收、扫描器、透镜天线和信号处理电路组成。激光发射部分主要有两种,一种是激光二极管,通常有硅和砷化镓两种基底材料,再有一种就是目前非常火热的垂直腔面发射(VCSEL)(比如 iPhone 上的 LiDAR),VCSEL 的优点是价格低廉,体积极小,功耗极低,缺点是有效距离比较短,需要多级放大才能达到车用的有效距离。激光雷达主要应用了激光测距的原理,而如何制造合适的结构使得传感器能向多个方向发射激光束,如何测量激光往返的时间,这便区分出了不同的激光雷达的结构。览沃 Mid - 360 水平视场角达 360°,垂直视场角 59°。浙江固态激光雷达渠道

而如较新的 Livox Horizon 激光雷达,也包含了多回波信息及噪点信息,格式如下:每个标记信息由1字节组成:该字节中 bit7 和 bit6 为头一组,bit5 和 bit4 为第二组,bit3 和 bit2 为第三组,bit1 和 bit0 为第四组。第二组表示的是该采样点的回波次序。由于 Livox Horizon 采用同轴光路,即使外部无被测物体,其内部的光学系统也会产生一个回波,该回波记为第 0 个回波。随后,若激光出射方向存在可被探测的物体,则较先返回系统的激光回波记为第 1 个回波,随后为第 2 个回波,以此类推。如果被探测物体距离过近(例如 1.5m),第 1 个回波将会融合到第 0 个回波里,该回波记为第 0 个回波。吉林Horizon激光雷达Mid - 360 作为新选择,让移动机器人在更多场景精确感知环境。

点频,即周期采集点数,因为激光雷达在旋转扫描,因此水平方向上扫描的点数和激光雷达的扫描频率有一定的关系,扫描越快则点数会相对较少,扫描慢则点数相对较多。一般这个参数也被称为水平分辨率,比如激光雷达的水平分辨率为 0.2°,那么扫描的点数为 360°/0.2°=1800,也就是说水平方向会扫描 1800 次。那么激光雷达旋转一周,即一个扫描周期内扫描的点数为 1800*64=115200。比如禾赛 64 线激光雷达,扫描频率为 10Hz 的时候水平角分辨率为 0.2°,在扫描频率为 20Hz 的时候角分辨率为 0.4°(扫描快了,分辨率变低了)。输出的点数和计算的也相符合 1152000 pts/s。
在三维模型重建方面,较初的研究集中于邻接关系和初始姿态均已知时的点云精配准、点云融合以及三维表面重建。在此,邻接关系用以指明哪些点云与给定的某幅点云之间具有一定的重叠区域,该关系通常通过记录每幅点云的扫描顺序得到。而初始姿态则依赖于转台标定、物体表面标记点或者人工选取对应点等方式实现。这类算法需要较多的人工干预,因而自动化程度不高。接着,研究人员转向点云邻接关系已知但初始姿态未知情况下的三维模型重建,常见方法有基于关键点匹配、基于线匹配、以及基于面匹配 等三类算法。激光雷达在安防领域实现了对入侵者的快速识别和追踪。

激光雷达结构,激光雷达的关键部件按照信号处理的信号链包括控制硬件DSP(数字信号处理器)、激光驱动、激光发射发光二极管、发射光学镜头、接收光学镜头、APD(雪崩光学二极管)、TIA(可变跨导放大器)和探测器,如下图所示。其中除了发射和接收光学镜头外,都是电子部件。随着半导体技术的快速演进,性能逐步提升的同时成本迅速降低。但是光学组件和旋转机械则占具了激光雷达的大部分成本。激光雷达的种类,把激光雷达按照扫描方式来分类,目前有机械式激光雷达、半固态激光雷达和固态激光雷达三大类。其中机械式激光雷达较为常用,固态激光雷达为未来业界大力发展方向,半固态激光雷达是机械式和纯固态式的折中方案,属于目前阶段量产装车的主力军。激光雷达的轻便设计使其便于携带和操作。广西激光雷达制造
览沃 Mid - 360 带来全新感知方案,助力移动机器人功能升级。浙江固态激光雷达渠道
对于激光的波长,目前主要使用使用波长为905nm和1550nm的激光发射器,波长为1550nm的光线不容易在人眼液体中传输。故1550nm可在保证安全的前提下较大程度上提高发射功率。大功率能得到更远的探测距离,长波长也能提高抗干扰能力。但是1550nm激光需使用InGaAs,目前量产困难。故当前更多使用Si材质量产905nm的LiDAR。通过限制功率和脉冲时间来保证安全性。技术原理,激光雷达探测的具体技术可以分为TOF飞行时间法与相干探测方法。其中ToF方法可以进一步区分为iToF和dToF方法;飞行时间(ToF)探测方法,通过直接计算发射及接收电磁波的时间差测量被测目标的距离;相干探测方法(如:FMCW),通过测量发射电磁波与返回电磁波的频率变化解调出被测目标的距离及速度。浙江固态激光雷达渠道