光学相控阵激光雷达(OPA),很多特殊的Lidar使用OPA(OpticalPhasedArray)光学相控阵技术。OPA运用相干原理,采用多个光源组成阵列,通过调节发射阵列中每个发射单元的相位差,来控制输出的激光束的方向。OPA激光雷达完全是由电信号控制扫描方向,能够动态地调节扫描角度范围,对目标区域进行全局扫描或者某一区域的局部精细化扫描,一个激光雷达就可能覆盖近/中/远距离的目标探测。优点:纯固态Lidar,体积小,易于车规;扫描速度快(一般可达到MHz量级以上);精度高(可以做到μrad量级以上);可控性好(可以在感兴趣的目标区域进行高密度扫描),缺点:易形成旁瓣,影响光束作用距离和角分辨率,使激光能量被分散;加工难度高:光学相控阵要求阵列单元尺寸必须不大于半个波长;探测距离很难做到很远。服务机器人借助激光雷达规划路径,实现室内外自主移动。FOV激光雷达厂家

优劣势分析,优势:OPA激光雷达发射机采用纯固态器件,没有任何需要活动的机械结构,因此在耐久度上表现更出众;虽然省去机械扫描结构,但却能做到类似机械式的全景扫描,同时在体积上可以做得更小,量产后的成本有望较大程度上降低。劣势:OPA激光雷达对激光调试、信号处理的运算力要求很大,同时,它还要求阵列单元尺寸必须不大于半个波长,因此每个器件尺寸只500nm左右,对材料和工艺的要求都极为苛刻,由于技术难度高,上游产业链不成熟,导致 OPA 方案短期内难以车规级量产,目前也很少有专注开发OPA激光雷达的Tier1供应商。FOV激光雷达厂家工业生产里激光雷达检测产品缺陷,有效保障产品质量。

激光雷达难点:当周边环境中存在透明介质 (如洁净水体) 时,位于透明介质内部或后方的目标能够被测到。由于光线在透明介质中会发生折射,被测目标实际上位于折射光路上,而测量结果则位于直线光路上,测量出的目标位置会发生偏差,此外,雷达也可能会收到两个反射回波,一个来自于透明介质内部或后方的实际目标表面的反射,另一个来自于不完全洁净的透明介质表面的漫反射,此时的测量结果不确定,有可能是介质表面,也可能是实际目标。
从自动驾驶技术发展来看,L0-L2阶段,传感器与控制系统的革新是主要变化;L3-L4阶段,感知与决策能力的增强是主要变化。L2、L3及L4级别的智能驾驶所需激光雷达台数分别为0台、1台和5台,激光雷达称为推动智能驾驶发展的重要因素。就国内市场而言,中国拥有世界较大的高级辅助驾驶和无人驾驶市场,成长空间也较为广阔。2020年11月发布的《智能网联汽车技术路线图(2.0版)》明确指出到2030年我国L2和L3级渗透率要超过70%。但激光雷达的技术路线仍然有其他的选项尚未成熟,市场目前依然处于群雄逐鹿的状态。伴随着在汽车行业的不断渗透与工业自动化的发展,激光雷达的投资机会可不断给到我们想象空间。览沃 Mid - 360 凭借 360°x59° 超广 FOV,感知三维空间信息。

工作原理,Flash原本的意思为快闪。而Flash激光雷达的原理也是快闪,不像MEMS或OPA的方案会去进行扫描,而是短时间直接发射出一大片覆盖探测区域的激光,再以高度灵敏的接收器,来完成对环境周围图像的绘制。因此,Flash固态激光雷达属于非扫描式雷达,发射面阵光,是以2维或3维图像为重点输出内容的激光雷达。某种意义上,它有些类似于黑夜中的照相机,光源由自己主动发出。Flash激光雷达的成像原理是发射大面积激光一次照亮整个场景,然后使用多个传感器接收检测和反射光。但较大的问题是,这种工作模式需要非常高的激光功率。安防监控运用激光雷达实时监测,及时发现入侵异常情况。天津工业激光雷达市价
主动抗串扰设计,使 Mid - 360 在多雷达环境中稳定运行不干扰。FOV激光雷达厂家
LiDAR还能够用于确定测量目标的速度。这可以通过多普勒方法或快速连续测距来实现。例如,可以使用LiDAR系统测量风速和车速。另外,LiDAR系统能够用于建立动态场景的三维模型,这是自动驾驶中会遇到的情形。这可以通过多种方式来实现,通常使用的是扫描的方式。LiDAR 技术中的挑战,在可实现的LiDAR系统中存在一些众所周知的挑战。这些挑战根据LiDAR系统的类型有所不同。以下是一些示例:隔离和抑制发射光束的信号——探测光束的辐射亮度通常远大于回波光束。必须注意确保探测光束不会被系统自身反射或散射回接收器,否则探测器将会因为饱和而无法探测外部目标。FOV激光雷达厂家