辅助驾驶,在目前的L2/L3级高级辅助驾驶中,激光雷达可覆盖前向视场(水平视场角覆盖60°到120°)以实现自动跟车或者高速自适应巡航等功能。通过发射信号和反射信号的对比,构建出点云图,从而实现诸如目标距离、方位、速度、姿态、形状等信息的探测和识别。除了传统的障碍物检测以外,激光雷达还可以应用于车道线检测。优点在于测距远、精度高,获取信息丰富,抗源干扰能力强。自动驾驶,未来,L4/L5级无人驾驶应用的实现,有赖于激光雷达提供的感知信息。激光雷达是一种可以扫描周围环境并生成三维图像的传感器。它可以被用于识别障碍物、构建地图和定位车辆等应用场景。该级别应用需要面对复杂多变的行驶环境,对激光雷达性能水平要求较高,在要求360°水平扫描范围的同时,对于低反射率物体的较远测距能力需要达到200m,且需要更高的线数以及更密的点云分辨率;同时为了减少噪点还需要激光雷达具有抵抗同环境中其他激光雷达干扰的能力。激光雷达的维护简单,降低了使用成本。云南POE激光雷达

从自动驾驶技术发展来看,L0-L2阶段,传感器与控制系统的革新是主要变化;L3-L4阶段,感知与决策能力的增强是主要变化。L2、L3及L4级别的智能驾驶所需激光雷达台数分别为0台、1台和5台,激光雷达称为推动智能驾驶发展的重要因素。就国内市场而言,中国拥有世界较大的高级辅助驾驶和无人驾驶市场,成长空间也较为广阔。2020年11月发布的《智能网联汽车技术路线图(2.0版)》明确指出到2030年我国L2和L3级渗透率要超过70%。但激光雷达的技术路线仍然有其他的选项尚未成熟,市场目前依然处于群雄逐鹿的状态。伴随着在汽车行业的不断渗透与工业自动化的发展,激光雷达的投资机会可不断给到我们想象空间。机器人激光雷达参考价激光雷达通过多角度扫描,获取目标的完整信息。

新思科技提供的多个光学和光子学工具,可用于支持LiDAR的系统级和元件级设计:CODE V 光学设计软件,用于在LiDAR系统中设计光学接收系统。光学设计应用:在 LiDAR系统中优化接收器上的圈入能量。使用CODE V优化LiDAR中的接收光学系统,LightTools 照明设计软件能模拟雨滴、雾霾等大气环境对光信号探测造成的影响,并能获取返回光程数据以解决飞行时间计算问题。用于 LiDAR 和激光光源的功能。使用LightTools模拟LiDAR光学系统,Photonic Solutions光子方案模拟工具,能够对LiDAR系统中的多个组件进行优化设计。
激光雷达难点:当周边环境中存在透明介质 (如洁净水体) 时,位于透明介质内部或后方的目标能够被测到。由于光线在透明介质中会发生折射,被测目标实际上位于折射光路上,而测量结果则位于直线光路上,测量出的目标位置会发生偏差,此外,雷达也可能会收到两个反射回波,一个来自于透明介质内部或后方的实际目标表面的反射,另一个来自于不完全洁净的透明介质表面的漫反射,此时的测量结果不确定,有可能是介质表面,也可能是实际目标。环境监测时激光雷达追踪污染物,评估区域环境质量。

激光雷达的应用:1测量测绘,1、地形测绘,激光雷达通过揭示地面细微的高程变化来展示地貌。它较大的优势在于它是一个高速“采样工具”,激光雷达每秒从空中向地面发出数十万甚至上百万个脉冲,正是这种密集的点云使我们能够获取真实地貌。2、建筑质量控制,使用LiDAR进行建筑扫描可以确保建筑与建筑信息模型(BIM)相匹配。将来自地面扫描的点云与BIM设计对比可保证施工质量并按计划进行,LiDAR较大的优势是实时扫描,能在项目早期发现缺陷,否则,任何有缺陷的结构返工都会浪费时间和金钱。具备主动抗串扰能力,Mid - 360 在复杂室内雷达环境互不干扰。湖北激光雷达
Mid - 360 小巧体积,安装布置灵活,满足移动机器人多样安装需求。云南POE激光雷达
激光雷达能够准确输出障碍物的大小和距离,通过算法对点云数据的处理可以输出障碍物的3D框,如:3D行人检测、3D车辆检测等;亦可进行车道线检测、场景分割等任务。除了障碍物感知,激光雷达还可以用来制作高精度地图。地图采集过程中,激光雷达每隔一小段时间输出一帧点云数据,这些点云数据包含环境的准确三维信息,通过把这些点云数据做拼接,就可以得到该区域的高精度地图。在定位方面,智能车在行驶过程中利用当前激光雷达采集的点云数据帧和高精度地图做匹配,可以获取智能车的位置。云南POE激光雷达