产品经工研所QPQ处理后,在表面会形成一层氮化层,为保证产品质量合格,会对同材质同状态的样块或产品进行渗层深度、致密度以及渗氮层氮化物级别判定的金相检测,通常有金相法和显微硬度法来确定扩散层的深度,金相法相较于硬度法简单便捷,对于铸铁件、碳钢件、合金钢铁件等材料使用硒酸腐蚀,对于不锈钢,模具钢等材料使用硝酸酒精腐蚀剂腐蚀。在显微镜下观察,从表面计算到针状氮化物终了处或与心部有明显差别处作为总渗层深度,除去化合物深度即为扩散层深度。QPQ表面处理可以减少刀具的切削力。微变形QPQ扩散层

不锈钢分为奥氏体不锈钢、马氏体不锈钢以及铁素体不锈钢,适用于室外潮湿环境,具有很强耐腐蚀性能的304属于奥氏体不锈钢。奥氏体不锈钢由于含碳量低,是不能通过热处理来提高硬度的,如果表面要进行硬化处理,可以通过低温离子渗氮处理(QPQ),304不锈钢中的铬和氮元素有较好的亲和力,可以在氮化过程中生成弥散分布的氮化物起到硬化作用,成都工具研究所QPQ表面复合处理技术处理后的维氏硬度可达1000HV,同时还能保持不锈钢的耐腐蚀性能。表面防护QPQ替代高频淬火成都工具研究所有限公司的QPQ表面处理技术可以提高刀具的加工精度。

成都工具研究所在原有QPQ技术基础上开发了深层QPQ技术,化合物层深度更大,由原有的15~20μm增加到30~40μm以上。该技术可明显提高材料的力学性能和抗蚀性。与其他表面处理方法相比,工件具有更高的耐疲劳强度,能够明显提高工件的耐磨性能。工件表面硬度得到提升,提高了工件的耐用性和使用寿命,且具有更高的耐腐蚀性。QPQ处理能够保持尺寸稳定,与其他表面处理方法相比,QPQ处理对零部件尺寸变化的影响较小,有利于保持高精度要求。
在汽车发动机中,活塞杆是连接活塞和曲轴的关键部位,它承受着活塞往复运动时的巨大力量,并将这些力量转化为旋转动力,驱动汽车前进,因此,它要求有较高的耐磨性和良好的耐蚀性。原来一般采用镀硬铬来增加表面的耐蚀性和耐磨性,但是镀铬的六价铬离子严重污染环境,因此采用环保的工研所QPQ工艺方法,其耐磨性比镀硬铬高2倍,耐蚀性比镀硬铬高20倍,同时通过盐雾试验发现工研所QPQ处理后的活塞杆具有良好的耐蚀性,因此可以用工研所QPQ技术代替镀硬铬。QPQ表面处理可以减少刀具的摩擦系数,提高切削效率。

相较于原有的QPQ技术,成都工具研究所有限公司研发的新一代的QPQ盐浴复合处理技术的化合物渗层由原有的15~20μm增加到30~40μm以上,并且成都工具研究所配备有多套QPQ设备、全套先进检验设备,如金相显微镜、维氏硬度计、盐雾试验机、SEM扫描电镜、X射线衍射仪、抛光设备等,可长期承接外协加工业务。产品经过QPQ技术处理后,具有高硬度、高抗蚀、高耐磨、微变形、环保等优良特性,可替代发黑、磷化、镀铬、气体渗氮、离子渗氮、渗碳等常规工艺。成都工具研究所有限公司的QPQ表面处理技术在刀具行业内享有很高的声誉。低温盐浴QPQ化学稳定性
QPQ表面处理可以有效地提高刀具的抗腐蚀性能。微变形QPQ扩散层
电镀技术就是利用电解原理在某些金属表面上镀上一层其它金属或合金的过程,通过金属膜来防止金属氧化,提高耐蚀性与耐磨性。随着环保政策的管控,电镀工艺存在的重金属污染在较多地区受到一定的限制。工研所QPQ热处理表面改性技术主要应用在黑色金属的防腐抗蚀、硬度提升、耐磨性提升等性能需求。通过在高温(400-650℃)下对工件进行氮化和氧化处理,使金属表面形成一层硬度较高的氮化物层,这种氮化物层具有极高的硬度和耐磨性,能够有效提高金属制品的表面硬度、耐磨性和耐蚀性。微变形QPQ扩散层