工研所的《QPQ盐浴复合处理技术及其成套设备》荣获国家科技进步二等奖、四川省科技进步一等奖,同时是国家重点推广新项目,编著《QPQ技术的原理与应用》行业专著一部,参与编写制定QPQ行业标准。团队通过承接国家、省部级科研项目如《石油管用深层QPQ防腐技术的开发研究》、《深层QPQ盐浴奥氏体氮碳共渗与氧化工艺的研究与开发》、《超深层QPQ技术的研发》等,先后开发出第二代QPQ处理技术、超深层QPQ处理技术,低温QPQ处理技术并实现推广应用。QPQ表面处理可以增加刀具的抗磨性,减少刀具更换频率。氮化盐浴QPQPIP

工研所的QPQ表面复合处理技术,是一种针对金属表面的处理工艺,通过将零件浸入高温的软氮化槽中使氮、碳和少量氧扩散到金属表面从而形成复合层。工研所的QPQ表面复合处理技术通过在金属表面形成一层淬火层和极硬的奥氏体组织(化合物层),使得处理后的零件表面具有出色的耐磨性。工研所的QPQ表面复合处理技术处理后的零件表面形成的氮化物层具有良好的化学稳定性和抗腐蚀性,能够有效防止零件表面受到腐蚀,该特性使QPQ处理后的零件在潮湿、腐蚀性环境下依然能够保持良好的性能,并延长其在恶劣环境中的使用寿命。QPQ 技术在耐磨性、耐腐蚀性和尺寸稳定性方面具有明显优势,适用于各种钢和铁制部件,同时,QPQ 不会明显改变零件尺寸,因此非常适合公差要求严格的零件。铝合金QPQ金相经过QPQ表面处理的刀具具有更好的切削稳定性和切削精度。

气门的作用是是专门负责向汽车发动机内输入空气并派出燃烧后的废气,气门是在高温状态下工作的零件,因此气门除了选用热强钢材料外,还要注意气门的接触面是一个危险区域,该区域要求耐热蚀、热疲劳、耐磨损,因此必须进行表面强化。较早的表面强化技术是采用镀硬铬,现在气门材料常用4Cr9Si2钢、40Cr以及5Cr21Mn9Ni4N,比较试验表明,40Cr钢气门和5Cr21Mn9Ni4N钢排气门经工研所QPQ处理后,其耐磨性比镀硬铬高2倍,并成功地解决了六价铬的公害问题。
销轴的主要材质是42CrMo,它是履带式起重机的主要连接部件,由于在各工地专场时经常进行敲击拆装,所以在使用过程中通常会承受较大的动载荷作用,易发生磕碰、磨损、锈蚀。在这种条件下,常规的防锈措施根本无法满足要求,因此对该部位的防腐性能提出了较高的要求。QPQ处理工艺是金属表面改性强化技术之一,在进行普通热处理后,表面硬度为240HV,然而在工研所QPQ处理后的表面硬度约750HV,同时,工研所QPQ处理后的总渗层厚度可达200μm,其中扩散层厚度约100μm,其余为化合物层,表面还存在深度约为3.6μm的Fe3O4氧化膜。QPQ表面处理可以使刀具具有更高的切削精度。

QPQ是英文“Quench-Polish-Quench”的首字母缩写,释义为“淬火-抛光-淬火”。抛光是产品进行精细化处理的一种手段,还有喷丸(抛丸)、喷砂、研磨。可根据产品的技术要求(如外光要求、粗糙度要求、盐雾时间要求)选择合适的精细化处理方式。抛光是指利用机械、化学或者电化学的方式使工件表面粗糙度降低,以获得光亮平整的表面,QPQ常见的抛光方式有振动抛光、杆式抛光、布伦抛光以及羊毛刷手动抛光等;喷丸主要通过去除工件表面的疏松层与氧化膜来提供工件的机械性能和防腐性能,经过工研所QPQ处理的42CrMo工件进行抛丸处理,发现工件表面氧化膜去除,化合物层完好,耐蚀性提高;喷砂的破坏力强于喷丸,在使用过程中通常使用80目以上的玻璃砂,喷砂工艺不仅应用于后处理上,对于某些不锈钢产品,为确保产品外观,在QPQ处理前也需要进行喷砂处理以消除表面残余应力;研磨是通过研具与工件在一定压力下的相对运动对工件表面进行精整加工,主要应用于表面粗糙度较高、精密零件采用的工艺,加工精度可达IT5~01,表面粗糙度可达Ra0.63~0.01μm,研磨方法一般可分为湿研、干研和半干研,目前使用较多的一般是铜棒研磨。QPQ表面处理可以提高刀具的抗粘附性能。石油QPQ低温液态氧氮化
QPQ表面处理可以提高刀具的抗氧化性能。氮化盐浴QPQPIP
成都工具研究所在原有QPQ技术基础上开发了深层QPQ技术,化合物层深度更大,由原有的15~20μm增加到30~40μm以上。该技术可明显提高材料的力学性能和抗蚀性。与其他表面处理方法相比,工件具有更高的耐疲劳强度,能够明显提高工件的耐磨性能。工件表面硬度得到提升,提高了工件的耐用性和使用寿命,且具有更高的耐腐蚀性。QPQ处理能够保持尺寸稳定,与其他表面处理方法相比,QPQ处理对零部件尺寸变化的影响较小,有利于保持高精度要求。氮化盐浴QPQPIP