企业商机
氧化石墨基本参数
  • 品牌
  • 第六元素
  • 型号
氧化石墨企业商机

配体交换作用即:氧化石墨烯上原有的配位体被溶液中的金属离子所取代,并以配位键的形式生成不溶于水的配合物,**终通过简单的过滤即可从溶液中去除。Tang等47对Fe与GO(质量比为1:7.5)复合及Fe与Mn(摩尔比为3∶1)复合的氧化石墨烯/铁-锰复合材料(GO/Fe-Mn)进行了吸附研究,通过一系列的实验表明,氧化石墨烯对Hg2+的吸附机理主要是配体交换作用,其比较大吸附量达到32.9mg/g。Hg2+可在水环境中形成Hg(OH)2,与铁锰氧化物中的活性点位(如-OH)发生配体交换作用,从而将Hg(OH)2固定在氧化石墨烯/铁-锰复合材料上,达到去除水环境中Hg2+的目的。氧化石墨烯经一定功能化处理后可发挥更大的性能优势,例如大比表面积、高敏感度和高选择性等,这些特性对于氧化石墨烯作为吸附剂吸附水环境中的金属离子有着重要的作用。随着含氧基团的去除,氧化石墨烯(GO)在可见光波段的的光吸收率迅速上升。深圳开发氧化石墨

深圳开发氧化石墨,氧化石墨

在光通信领域,徐等人开发了飞秒氧化石墨烯锁模掺铒光纤激光器,与基于石墨烯的可饱和吸收体相比,具有性能有所提升,并且具有易于制造的优点[95],这是GO/RGO在与光纤结合应用**早的报道之一。在传感领域,Sridevi等提出了一种基于腐蚀布拉格光栅光纤(FBG)外加GO涂层的高灵敏、高精度生化传感器,该方法在检测刀豆球蛋白A中进行了试验[96]。为了探索光纤技术和GO特性结合的优点,文献[97]介绍了不同的GO涂层在光纤样品上应用的特点,还分析了在倾斜布拉格光栅光纤FBG(TFBG)表面增加GO涂层对折射率(RI)变化的影响,论证了这种构型对新传感器的发展的适用性。图9.14给出了归一化的折射率变化数据,显示了这种构型在多种传感领域应用的可能。常州改性氧化石墨静电作用的强弱与氧化石墨烯表面官能团产生的负电荷相关。

深圳开发氧化石墨,氧化石墨

氧化石墨烯(GO)在很宽的光谱范围内具有光致发光性质,同时也是高效的荧光淬灭剂。氧化石墨烯(GO)具有特殊的光学性质和多样化的可修饰性,为石墨烯在光学、光电子学领域的应用提供了一个功能可调控的强大平台[6],其在光电领域的应用日趋***。氧化石墨烯(GO)和还原氧化石墨烯(RGO)应用于光电传感,主要是作为电子给体或者电子受体材料。作为电子给体材料时,利用的是其在光的吸收、转换、发射等光学方面的特殊性质,作为电子受体材料时,利用的是其优异的载流子迁移率等电学性质。本书前面的内容中对氧化石墨烯(GO)、还原氧化石墨烯(RGO)的电学性质已经有了比较详细的论述,本章在介绍其在光电领域的应用之前,首先对相关的光学性质部分进行介绍。

(1)将GO作为荧光共振能量转移的受体,构建荧光共振能量转移型氧化石墨烯生物传感器,用于检测各种生物分子。(2)可以将一些抗体键合在GO表面,构建成抗体型氧化石墨烯传感器,通常是将GO作为荧光共振能量转移或化学发光共振能量转移的受体,以此来检测抗原物质;或者利用GO比表面积较大能结合更多抗体的特点,将检测信号进行进一步放大。(3)构建多肽型氧化石墨烯传感器。因为GO是一种边缘含有亲水基团(-COOH,-OH及其他含氧基团)而基底具有高疏水性的两性物质,当多肽与GO孵育时,多肽的芳环和其他疏水性残基与GO的疏水性基底堆积,同时二者部分残基之间也会存在静电作用,这样多肽组装在GO上形成了多肽型氧化石墨烯传感器。当多肽被荧光基团标记时,二者之间发生荧光共振能量转移后,GO使荧光发生猝灭。氧化石墨烯(GO)的比表面积很大,厚度小。

深圳开发氧化石墨,氧化石墨

氧化石墨烯表面含有-OH和-COOH等丰富的官能团,在水中可发生去质子化等反应带有负电荷,由于静电作用将金属阳离子吸附至表面;相反的,如果水中pH等环境因素发生变化,氧化石墨烯表面也可携带正电荷,则与金属离子产生静电斥力,二者之间的吸附作用**减弱。而静电作用的强弱与氧化石墨烯表面官能团产生的负电荷相关,其受环境pH值的影响较明显。Wang44等人的研究证明,在pH>pHpzc时(pHpzc=3.8),GO表面的官能团可发生去质子化反应而带负电,可有效吸附铀离子U(VI),其吸附量可达到1330mg/g。通过调控氧化石墨烯的结构,降低氧化程度,降低难分解的芳香族官能团。宁波进口氧化石墨

GO的掺量对于水泥复合材料的提升效果也有差异。深圳开发氧化石墨

氧化石墨烯(GO)与石墨烯的另一个区别是在吸收紫外/可见光后会发出荧光。通常可以在可见光波段观测到两个峰值,一个在蓝光段(400-500nm),另一个在红光段(600-700nm)。关于氧化石墨烯发射荧光的机理,学界仍有争论。此外,氧化石墨烯的荧光发射会随着还原的进行逐渐变化,在轻度化学还原过程中观察到GO光致发光光谱发生红移,这一发现与其他人观察到的发生蓝移的现象相矛盾。这从另一个方面说明了氧化石墨烯结构的复杂性和性质的多样性。深圳开发氧化石墨

氧化石墨产品展示
  • 深圳开发氧化石墨,氧化石墨
  • 深圳开发氧化石墨,氧化石墨
  • 深圳开发氧化石墨,氧化石墨
与氧化石墨相关的**
信息来源于互联网 本站不为信息真实性负责